Recurrent Neural Associative Learning of Forward and Inverse Kinematics for Movement Generation of the Redundant PA-10 Robot
We present a connectionist approach to learn forward and redundant inverse kinematics in a single recurrent network. The network architecture extends the reservoir computing idea, i.e. to read out the state of a fixed dynamic system, into an associative setting, which learns the forward and backward...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a connectionist approach to learn forward and redundant inverse kinematics in a single recurrent network. The network architecture extends the reservoir computing idea, i.e. to read out the state of a fixed dynamic system, into an associative setting, which learns the forward and backward mapping simultaneously. For output learning we use efficient Backpropagation-Decorrelation learning while the recurrent dynamics is adjusted by an unsupervised biologically inspired learning rule based on intrinsic plasticity. Including linear connections between input and output allows to train the network for autonomous movement generation. We show results for the 7-DOF redundant PA-10 robot arm in simulation. |
---|---|
DOI: | 10.1109/LAB-RS.2008.17 |