Learning the Structure of Task-Driven Human-Human Dialogs
With the availability of large corpora of spoken dialog, it is now possible to use data-driven techniques to build and use models of task-oriented dialogs. In this paper, we use data-driven techniques to build task structures for individual dialogs, and use the dialog task structures for: dialog act...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2008-09, Vol.16 (7), p.1249-1259 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the availability of large corpora of spoken dialog, it is now possible to use data-driven techniques to build and use models of task-oriented dialogs. In this paper, we use data-driven techniques to build task structures for individual dialogs, and use the dialog task structures for: dialog act classification, task/subtask classification, task/subtask prediction, and dialog act prediction. We evaluate our approach using a corpus of customer/agent dialogs from a catalog service domain. This paper demonstrates the feasibility of using corpora of human-human conversation to learn dialog models suitable for human-computer dialog applications. |
---|---|
ISSN: | 1558-7916 2329-9290 1558-7924 2329-9304 |
DOI: | 10.1109/TASL.2008.2001102 |