Learning the Structure of Task-Driven Human-Human Dialogs

With the availability of large corpora of spoken dialog, it is now possible to use data-driven techniques to build and use models of task-oriented dialogs. In this paper, we use data-driven techniques to build task structures for individual dialogs, and use the dialog task structures for: dialog act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2008-09, Vol.16 (7), p.1249-1259
Hauptverfasser: Bangalore, S., Di Fabbrizio, G., Stent, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the availability of large corpora of spoken dialog, it is now possible to use data-driven techniques to build and use models of task-oriented dialogs. In this paper, we use data-driven techniques to build task structures for individual dialogs, and use the dialog task structures for: dialog act classification, task/subtask classification, task/subtask prediction, and dialog act prediction. We evaluate our approach using a corpus of customer/agent dialogs from a catalog service domain. This paper demonstrates the feasibility of using corpora of human-human conversation to learn dialog models suitable for human-computer dialog applications.
ISSN:1558-7916
2329-9290
1558-7924
2329-9304
DOI:10.1109/TASL.2008.2001102