Visual tracking via incremental Log-Euclidean Riemannian subspace learning

Recently, a novel Log-Euclidean Riemannian metric is proposed for statistics on symmetric positive definite (SPD) matrices. Under this metric, distances and Riemannian means take a much simpler form than the widely used affine-invariant Riemannian metric. Based on the Log-Euclidean Riemannian metric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Xi, Weiming, Hu, Zhang, Zhongfei, Zhang, Xiaoqin, Zhu, Mingliang, Cheng, Jian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, a novel Log-Euclidean Riemannian metric is proposed for statistics on symmetric positive definite (SPD) matrices. Under this metric, distances and Riemannian means take a much simpler form than the widely used affine-invariant Riemannian metric. Based on the Log-Euclidean Riemannian metric, we develop a tracking framework in this paper. In the framework, the covariance matrices of image features in the five modes are used to represent object appearance. Since a nonsingular covariance matrix is a SPD matrix lying on a connected Riemannian manifold, the Log-Euclidean Riemannian metric is used for statistics on the covariance matrices of image features. Further, we present an effective online Log-Euclidean Riemannian subspace learning algorithm which models the appearance changes of an object by incrementally learning a low-order Log-Euclidean eigenspace representation through adaptively updating the sample mean and eigenbasis. Tracking is then led by the Bayesian state inference framework in which a particle filter is used for propagating sample distributions over the time. Theoretic analysis and experimental evaluations demonstrate the promise and effectiveness of the proposed framework.
ISSN:1063-6919
DOI:10.1109/CVPR.2008.4587516