Sequential particle swarm optimization for visual tracking

Visual tracking usually involves an optimization process for estimating the motion of an object from measured images in a video sequence. In this paper, a new evolutionary approach, PSO (particle swarm optimization), is adopted for visual tracking. Since the tracking process is a dynamic optimizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiaoqin Zhang, Weiming Hu, Maybank, S., Xi Li, Mingliang Zhu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Visual tracking usually involves an optimization process for estimating the motion of an object from measured images in a video sequence. In this paper, a new evolutionary approach, PSO (particle swarm optimization), is adopted for visual tracking. Since the tracking process is a dynamic optimization problem which is simultaneously influenced by the object state and the time, we propose a sequential particle swarm optimization framework by incorporating the temporal continuity information into the traditional PSO algorithm. In addition, the parameters in PSO are changed adaptively according to the fitness values of particles and the predicted motion of the tracked object, leading to a favourable performance in tracking applications. Furthermore, we show theoretically that, in a Bayesian inference view, the sequential PSO framework is in essence a multilayer importance sampling based particle filter. Experimental results demonstrate that, compared with the state-of-the-art particle filter and its variation - the unscented particle filter, the proposed tracking algorithm is more robust and effective, especially when the object has an arbitrary motion or undergoes large appearance changes.
ISSN:1063-6919
DOI:10.1109/CVPR.2008.4587512