Efficient sequential correspondence selection by cosegmentation
In many retrieval, object recognition and wide baseline stereo methods, correspondences of interest points are established possibly sublinearly by matching a compact descriptor such as SIFT. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process lea...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In many retrieval, object recognition and wide baseline stereo methods, correspondences of interest points are established possibly sublinearly by matching a compact descriptor such as SIFT. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that has (i) high precision (is highly discriminative) (ii) good recall and (iii) is fast. The sequential decision on the correctness of a correspondence is based on trivial attributes of a modified dense stereo matching algorithm. The attributes are projected on a prominent discriminative direction by SVM. Waldpsilas sequential probability ratio test is performed for SVM projection computed on progressively larger co-segmented regions. Experimentally we show that the process significantly outperforms the standard correspondence selection process based on SIFT distance ratios on challenging matching problems. |
---|---|
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR.2008.4587474 |