Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control

Evolvable hardware has shown to be a promising approach for prosthetic hand controllers as it features self-adaptation, fast training, and a compact system-on-chip implementation. Besides these intriguing features, the classification performance is paramount to success for any classifier. However, e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Glette, K., Torresen, J., Gruber, T., Sick, B., Kaufmann, P., Platzner, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue
container_start_page 32
container_title
container_volume
creator Glette, K.
Torresen, J.
Gruber, T.
Sick, B.
Kaufmann, P.
Platzner, M.
description Evolvable hardware has shown to be a promising approach for prosthetic hand controllers as it features self-adaptation, fast training, and a compact system-on-chip implementation. Besides these intriguing features, the classification performance is paramount to success for any classifier. However, evolvable hardware classifiers have not yet been sufficiently compared to state-of-the-art conventional classifiers. In this paper, we compare two evolvable hardware approaches for signal classification to three conventional classification techniques: k-nearest-neighbor, decision trees, and support vector machines. We provide all classifiers with features extracted from electromyographic signals taken from forearm muscle contractions, and try to recognize eight different hand movements. Experimental results demonstrate that evolvable hardware approaches are indeed able to compete with state-of-the-art classifiers. Specifically, one of our evolvable hardware approaches delivers a generalization performance similar to that of support vector machines.
doi_str_mv 10.1109/AHS.2008.12
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4584252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4584252</ieee_id><sourcerecordid>4584252</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-200f94f6d1352cb509f44a49f972f78b4fa6a621adda3914bce08b5217fd38f93</originalsourceid><addsrcrecordid>eNotjs9LwzAcxQMyUOdOHr3kH-jM7zTHUaoVBgrqeXzbJlskbUpSJvvv3XCn9-B93uMh9EjJmlJinjfN55oRUq4pu0Ero0uilZGcKsUX6P6SGMakEbdolfMPIYQapalgd8hVcZgg-XGP62MMR2iDxQ2k_heSxXPEVRyPdpx9HCHgKkDO3nmbMnYx4TrYbk5xOMV9gungO_yRYp4Pdj7bBsb-Uj8D4QEtHIRsV1ddou-X-qtqiu3761u12RaeajkX56fOCKd6yiXrWkmMEwKEcUYzp8tWOFCgGIW-B26oaDtLylYyql3PS2f4Ej3973pr7W5KfoB02glZCiYZ_wPDFlfp</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Glette, K. ; Torresen, J. ; Gruber, T. ; Sick, B. ; Kaufmann, P. ; Platzner, M.</creator><creatorcontrib>Glette, K. ; Torresen, J. ; Gruber, T. ; Sick, B. ; Kaufmann, P. ; Platzner, M.</creatorcontrib><description>Evolvable hardware has shown to be a promising approach for prosthetic hand controllers as it features self-adaptation, fast training, and a compact system-on-chip implementation. Besides these intriguing features, the classification performance is paramount to success for any classifier. However, evolvable hardware classifiers have not yet been sufficiently compared to state-of-the-art conventional classifiers. In this paper, we compare two evolvable hardware approaches for signal classification to three conventional classification techniques: k-nearest-neighbor, decision trees, and support vector machines. We provide all classifiers with features extracted from electromyographic signals taken from forearm muscle contractions, and try to recognize eight different hand movements. Experimental results demonstrate that evolvable hardware approaches are indeed able to compete with state-of-the-art classifiers. Specifically, one of our evolvable hardware approaches delivers a generalization performance similar to that of support vector machines.</description><identifier>ISBN: 9780769531663</identifier><identifier>ISBN: 0769531660</identifier><identifier>DOI: 10.1109/AHS.2008.12</identifier><identifier>LCCN: 2008922594</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; decision trees ; EHW ; Electromyography ; evolvable hardware ; Feature extraction ; Hardware ; kNN ; prosthetic hand control ; Steady-state ; Support vector machine classification ; support vector machines ; SVM ; Training</subject><ispartof>2008 NASA/ESA Conference on Adaptive Hardware and Systems, 2008, p.32-39</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4584252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4584252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Glette, K.</creatorcontrib><creatorcontrib>Torresen, J.</creatorcontrib><creatorcontrib>Gruber, T.</creatorcontrib><creatorcontrib>Sick, B.</creatorcontrib><creatorcontrib>Kaufmann, P.</creatorcontrib><creatorcontrib>Platzner, M.</creatorcontrib><title>Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control</title><title>2008 NASA/ESA Conference on Adaptive Hardware and Systems</title><addtitle>AHS</addtitle><description>Evolvable hardware has shown to be a promising approach for prosthetic hand controllers as it features self-adaptation, fast training, and a compact system-on-chip implementation. Besides these intriguing features, the classification performance is paramount to success for any classifier. However, evolvable hardware classifiers have not yet been sufficiently compared to state-of-the-art conventional classifiers. In this paper, we compare two evolvable hardware approaches for signal classification to three conventional classification techniques: k-nearest-neighbor, decision trees, and support vector machines. We provide all classifiers with features extracted from electromyographic signals taken from forearm muscle contractions, and try to recognize eight different hand movements. Experimental results demonstrate that evolvable hardware approaches are indeed able to compete with state-of-the-art classifiers. Specifically, one of our evolvable hardware approaches delivers a generalization performance similar to that of support vector machines.</description><subject>Classification algorithms</subject><subject>decision trees</subject><subject>EHW</subject><subject>Electromyography</subject><subject>evolvable hardware</subject><subject>Feature extraction</subject><subject>Hardware</subject><subject>kNN</subject><subject>prosthetic hand control</subject><subject>Steady-state</subject><subject>Support vector machine classification</subject><subject>support vector machines</subject><subject>SVM</subject><subject>Training</subject><isbn>9780769531663</isbn><isbn>0769531660</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjs9LwzAcxQMyUOdOHr3kH-jM7zTHUaoVBgrqeXzbJlskbUpSJvvv3XCn9-B93uMh9EjJmlJinjfN55oRUq4pu0Ero0uilZGcKsUX6P6SGMakEbdolfMPIYQapalgd8hVcZgg-XGP62MMR2iDxQ2k_heSxXPEVRyPdpx9HCHgKkDO3nmbMnYx4TrYbk5xOMV9gungO_yRYp4Pdj7bBsb-Uj8D4QEtHIRsV1ddou-X-qtqiu3761u12RaeajkX56fOCKd6yiXrWkmMEwKEcUYzp8tWOFCgGIW-B26oaDtLylYyql3PS2f4Ej3973pr7W5KfoB02glZCiYZ_wPDFlfp</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Glette, K.</creator><creator>Torresen, J.</creator><creator>Gruber, T.</creator><creator>Sick, B.</creator><creator>Kaufmann, P.</creator><creator>Platzner, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control</title><author>Glette, K. ; Torresen, J. ; Gruber, T. ; Sick, B. ; Kaufmann, P. ; Platzner, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-200f94f6d1352cb509f44a49f972f78b4fa6a621adda3914bce08b5217fd38f93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Classification algorithms</topic><topic>decision trees</topic><topic>EHW</topic><topic>Electromyography</topic><topic>evolvable hardware</topic><topic>Feature extraction</topic><topic>Hardware</topic><topic>kNN</topic><topic>prosthetic hand control</topic><topic>Steady-state</topic><topic>Support vector machine classification</topic><topic>support vector machines</topic><topic>SVM</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Glette, K.</creatorcontrib><creatorcontrib>Torresen, J.</creatorcontrib><creatorcontrib>Gruber, T.</creatorcontrib><creatorcontrib>Sick, B.</creatorcontrib><creatorcontrib>Kaufmann, P.</creatorcontrib><creatorcontrib>Platzner, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Glette, K.</au><au>Torresen, J.</au><au>Gruber, T.</au><au>Sick, B.</au><au>Kaufmann, P.</au><au>Platzner, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control</atitle><btitle>2008 NASA/ESA Conference on Adaptive Hardware and Systems</btitle><stitle>AHS</stitle><date>2008-06</date><risdate>2008</risdate><spage>32</spage><epage>39</epage><pages>32-39</pages><isbn>9780769531663</isbn><isbn>0769531660</isbn><abstract>Evolvable hardware has shown to be a promising approach for prosthetic hand controllers as it features self-adaptation, fast training, and a compact system-on-chip implementation. Besides these intriguing features, the classification performance is paramount to success for any classifier. However, evolvable hardware classifiers have not yet been sufficiently compared to state-of-the-art conventional classifiers. In this paper, we compare two evolvable hardware approaches for signal classification to three conventional classification techniques: k-nearest-neighbor, decision trees, and support vector machines. We provide all classifiers with features extracted from electromyographic signals taken from forearm muscle contractions, and try to recognize eight different hand movements. Experimental results demonstrate that evolvable hardware approaches are indeed able to compete with state-of-the-art classifiers. Specifically, one of our evolvable hardware approaches delivers a generalization performance similar to that of support vector machines.</abstract><pub>IEEE</pub><doi>10.1109/AHS.2008.12</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769531663
ispartof 2008 NASA/ESA Conference on Adaptive Hardware and Systems, 2008, p.32-39
issn
language eng
recordid cdi_ieee_primary_4584252
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classification algorithms
decision trees
EHW
Electromyography
evolvable hardware
Feature extraction
Hardware
kNN
prosthetic hand control
Steady-state
Support vector machine classification
support vector machines
SVM
Training
title Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparing%20Evolvable%20Hardware%20to%20Conventional%20Classifiers%20for%20Electromyographic%20Prosthetic%20Hand%20Control&rft.btitle=2008%20NASA/ESA%20Conference%20on%20Adaptive%20Hardware%20and%20Systems&rft.au=Glette,%20K.&rft.date=2008-06&rft.spage=32&rft.epage=39&rft.pages=32-39&rft.isbn=9780769531663&rft.isbn_list=0769531660&rft_id=info:doi/10.1109/AHS.2008.12&rft_dat=%3Cieee_6IE%3E4584252%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4584252&rfr_iscdi=true