Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control
Evolvable hardware has shown to be a promising approach for prosthetic hand controllers as it features self-adaptation, fast training, and a compact system-on-chip implementation. Besides these intriguing features, the classification performance is paramount to success for any classifier. However, e...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | |
container_start_page | 32 |
container_title | |
container_volume | |
creator | Glette, K. Torresen, J. Gruber, T. Sick, B. Kaufmann, P. Platzner, M. |
description | Evolvable hardware has shown to be a promising approach for prosthetic hand controllers as it features self-adaptation, fast training, and a compact system-on-chip implementation. Besides these intriguing features, the classification performance is paramount to success for any classifier. However, evolvable hardware classifiers have not yet been sufficiently compared to state-of-the-art conventional classifiers. In this paper, we compare two evolvable hardware approaches for signal classification to three conventional classification techniques: k-nearest-neighbor, decision trees, and support vector machines. We provide all classifiers with features extracted from electromyographic signals taken from forearm muscle contractions, and try to recognize eight different hand movements. Experimental results demonstrate that evolvable hardware approaches are indeed able to compete with state-of-the-art classifiers. Specifically, one of our evolvable hardware approaches delivers a generalization performance similar to that of support vector machines. |
doi_str_mv | 10.1109/AHS.2008.12 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4584252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4584252</ieee_id><sourcerecordid>4584252</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-200f94f6d1352cb509f44a49f972f78b4fa6a621adda3914bce08b5217fd38f93</originalsourceid><addsrcrecordid>eNotjs9LwzAcxQMyUOdOHr3kH-jM7zTHUaoVBgrqeXzbJlskbUpSJvvv3XCn9-B93uMh9EjJmlJinjfN55oRUq4pu0Ero0uilZGcKsUX6P6SGMakEbdolfMPIYQapalgd8hVcZgg-XGP62MMR2iDxQ2k_heSxXPEVRyPdpx9HCHgKkDO3nmbMnYx4TrYbk5xOMV9gungO_yRYp4Pdj7bBsb-Uj8D4QEtHIRsV1ddou-X-qtqiu3761u12RaeajkX56fOCKd6yiXrWkmMEwKEcUYzp8tWOFCgGIW-B26oaDtLylYyql3PS2f4Ej3973pr7W5KfoB02glZCiYZ_wPDFlfp</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Glette, K. ; Torresen, J. ; Gruber, T. ; Sick, B. ; Kaufmann, P. ; Platzner, M.</creator><creatorcontrib>Glette, K. ; Torresen, J. ; Gruber, T. ; Sick, B. ; Kaufmann, P. ; Platzner, M.</creatorcontrib><description>Evolvable hardware has shown to be a promising approach for prosthetic hand controllers as it features self-adaptation, fast training, and a compact system-on-chip implementation. Besides these intriguing features, the classification performance is paramount to success for any classifier. However, evolvable hardware classifiers have not yet been sufficiently compared to state-of-the-art conventional classifiers. In this paper, we compare two evolvable hardware approaches for signal classification to three conventional classification techniques: k-nearest-neighbor, decision trees, and support vector machines. We provide all classifiers with features extracted from electromyographic signals taken from forearm muscle contractions, and try to recognize eight different hand movements. Experimental results demonstrate that evolvable hardware approaches are indeed able to compete with state-of-the-art classifiers. Specifically, one of our evolvable hardware approaches delivers a generalization performance similar to that of support vector machines.</description><identifier>ISBN: 9780769531663</identifier><identifier>ISBN: 0769531660</identifier><identifier>DOI: 10.1109/AHS.2008.12</identifier><identifier>LCCN: 2008922594</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; decision trees ; EHW ; Electromyography ; evolvable hardware ; Feature extraction ; Hardware ; kNN ; prosthetic hand control ; Steady-state ; Support vector machine classification ; support vector machines ; SVM ; Training</subject><ispartof>2008 NASA/ESA Conference on Adaptive Hardware and Systems, 2008, p.32-39</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4584252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4584252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Glette, K.</creatorcontrib><creatorcontrib>Torresen, J.</creatorcontrib><creatorcontrib>Gruber, T.</creatorcontrib><creatorcontrib>Sick, B.</creatorcontrib><creatorcontrib>Kaufmann, P.</creatorcontrib><creatorcontrib>Platzner, M.</creatorcontrib><title>Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control</title><title>2008 NASA/ESA Conference on Adaptive Hardware and Systems</title><addtitle>AHS</addtitle><description>Evolvable hardware has shown to be a promising approach for prosthetic hand controllers as it features self-adaptation, fast training, and a compact system-on-chip implementation. Besides these intriguing features, the classification performance is paramount to success for any classifier. However, evolvable hardware classifiers have not yet been sufficiently compared to state-of-the-art conventional classifiers. In this paper, we compare two evolvable hardware approaches for signal classification to three conventional classification techniques: k-nearest-neighbor, decision trees, and support vector machines. We provide all classifiers with features extracted from electromyographic signals taken from forearm muscle contractions, and try to recognize eight different hand movements. Experimental results demonstrate that evolvable hardware approaches are indeed able to compete with state-of-the-art classifiers. Specifically, one of our evolvable hardware approaches delivers a generalization performance similar to that of support vector machines.</description><subject>Classification algorithms</subject><subject>decision trees</subject><subject>EHW</subject><subject>Electromyography</subject><subject>evolvable hardware</subject><subject>Feature extraction</subject><subject>Hardware</subject><subject>kNN</subject><subject>prosthetic hand control</subject><subject>Steady-state</subject><subject>Support vector machine classification</subject><subject>support vector machines</subject><subject>SVM</subject><subject>Training</subject><isbn>9780769531663</isbn><isbn>0769531660</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjs9LwzAcxQMyUOdOHr3kH-jM7zTHUaoVBgrqeXzbJlskbUpSJvvv3XCn9-B93uMh9EjJmlJinjfN55oRUq4pu0Ero0uilZGcKsUX6P6SGMakEbdolfMPIYQapalgd8hVcZgg-XGP62MMR2iDxQ2k_heSxXPEVRyPdpx9HCHgKkDO3nmbMnYx4TrYbk5xOMV9gungO_yRYp4Pdj7bBsb-Uj8D4QEtHIRsV1ddou-X-qtqiu3761u12RaeajkX56fOCKd6yiXrWkmMEwKEcUYzp8tWOFCgGIW-B26oaDtLylYyql3PS2f4Ej3973pr7W5KfoB02glZCiYZ_wPDFlfp</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Glette, K.</creator><creator>Torresen, J.</creator><creator>Gruber, T.</creator><creator>Sick, B.</creator><creator>Kaufmann, P.</creator><creator>Platzner, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control</title><author>Glette, K. ; Torresen, J. ; Gruber, T. ; Sick, B. ; Kaufmann, P. ; Platzner, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-200f94f6d1352cb509f44a49f972f78b4fa6a621adda3914bce08b5217fd38f93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Classification algorithms</topic><topic>decision trees</topic><topic>EHW</topic><topic>Electromyography</topic><topic>evolvable hardware</topic><topic>Feature extraction</topic><topic>Hardware</topic><topic>kNN</topic><topic>prosthetic hand control</topic><topic>Steady-state</topic><topic>Support vector machine classification</topic><topic>support vector machines</topic><topic>SVM</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Glette, K.</creatorcontrib><creatorcontrib>Torresen, J.</creatorcontrib><creatorcontrib>Gruber, T.</creatorcontrib><creatorcontrib>Sick, B.</creatorcontrib><creatorcontrib>Kaufmann, P.</creatorcontrib><creatorcontrib>Platzner, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Glette, K.</au><au>Torresen, J.</au><au>Gruber, T.</au><au>Sick, B.</au><au>Kaufmann, P.</au><au>Platzner, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control</atitle><btitle>2008 NASA/ESA Conference on Adaptive Hardware and Systems</btitle><stitle>AHS</stitle><date>2008-06</date><risdate>2008</risdate><spage>32</spage><epage>39</epage><pages>32-39</pages><isbn>9780769531663</isbn><isbn>0769531660</isbn><abstract>Evolvable hardware has shown to be a promising approach for prosthetic hand controllers as it features self-adaptation, fast training, and a compact system-on-chip implementation. Besides these intriguing features, the classification performance is paramount to success for any classifier. However, evolvable hardware classifiers have not yet been sufficiently compared to state-of-the-art conventional classifiers. In this paper, we compare two evolvable hardware approaches for signal classification to three conventional classification techniques: k-nearest-neighbor, decision trees, and support vector machines. We provide all classifiers with features extracted from electromyographic signals taken from forearm muscle contractions, and try to recognize eight different hand movements. Experimental results demonstrate that evolvable hardware approaches are indeed able to compete with state-of-the-art classifiers. Specifically, one of our evolvable hardware approaches delivers a generalization performance similar to that of support vector machines.</abstract><pub>IEEE</pub><doi>10.1109/AHS.2008.12</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769531663 |
ispartof | 2008 NASA/ESA Conference on Adaptive Hardware and Systems, 2008, p.32-39 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4584252 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classification algorithms decision trees EHW Electromyography evolvable hardware Feature extraction Hardware kNN prosthetic hand control Steady-state Support vector machine classification support vector machines SVM Training |
title | Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparing%20Evolvable%20Hardware%20to%20Conventional%20Classifiers%20for%20Electromyographic%20Prosthetic%20Hand%20Control&rft.btitle=2008%20NASA/ESA%20Conference%20on%20Adaptive%20Hardware%20and%20Systems&rft.au=Glette,%20K.&rft.date=2008-06&rft.spage=32&rft.epage=39&rft.pages=32-39&rft.isbn=9780769531663&rft.isbn_list=0769531660&rft_id=info:doi/10.1109/AHS.2008.12&rft_dat=%3Cieee_6IE%3E4584252%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4584252&rfr_iscdi=true |