Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control

Evolvable hardware has shown to be a promising approach for prosthetic hand controllers as it features self-adaptation, fast training, and a compact system-on-chip implementation. Besides these intriguing features, the classification performance is paramount to success for any classifier. However, e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Glette, K., Torresen, J., Gruber, T., Sick, B., Kaufmann, P., Platzner, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evolvable hardware has shown to be a promising approach for prosthetic hand controllers as it features self-adaptation, fast training, and a compact system-on-chip implementation. Besides these intriguing features, the classification performance is paramount to success for any classifier. However, evolvable hardware classifiers have not yet been sufficiently compared to state-of-the-art conventional classifiers. In this paper, we compare two evolvable hardware approaches for signal classification to three conventional classification techniques: k-nearest-neighbor, decision trees, and support vector machines. We provide all classifiers with features extracted from electromyographic signals taken from forearm muscle contractions, and try to recognize eight different hand movements. Experimental results demonstrate that evolvable hardware approaches are indeed able to compete with state-of-the-art classifiers. Specifically, one of our evolvable hardware approaches delivers a generalization performance similar to that of support vector machines.
DOI:10.1109/AHS.2008.12