NP-Completeness of the minimum edge-ranking spanning tree problem on series-parallel graphs
The minimum edge-ranking spanning tree (MERST) problem on a graph is to find a spanning tree of G whose edge-ranking needs least number of ranks. Although polynomial-time algorithm to solve the minimum edge-ranking spanning tree problem on series-parallel graphs with bounded degrees has been found,...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The minimum edge-ranking spanning tree (MERST) problem on a graph is to find a spanning tree of G whose edge-ranking needs least number of ranks. Although polynomial-time algorithm to solve the minimum edge-ranking spanning tree problem on series-parallel graphs with bounded degrees has been found, but for the unbounded degrees no polynomial-time algorithm is known. In this paper, we prove that the minimum edge-ranking spanning tree problem on general series-parallel graph is NP-complete. |
---|---|
DOI: | 10.1109/ICCITECHN.2007.4579371 |