Security-Constrained Unit Commitment With Volatile Wind Power Generation

This paper presents a security-constrained unit commitment (SCUC) algorithm which takes into account the intermittency and volatility of wind power generation. The UC problem is solved in the master problem with the forecasted intermittent wind power generation. Next, possible scenarios are simulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2008-08, Vol.23 (3), p.1319-1327
Hauptverfasser: Jianhui Wang, Shahidehpour, M., Zuyi Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a security-constrained unit commitment (SCUC) algorithm which takes into account the intermittency and volatility of wind power generation. The UC problem is solved in the master problem with the forecasted intermittent wind power generation. Next, possible scenarios are simulated for representing the wind power volatility. The initial dispatch is checked in the subproblem and generation redispatch is considered for satisfying the hourly volatility of wind power in simulated scenarios. If the redispatch fails to mitigate violations, Benders cuts are created and added to the master problem to revise the commitment solution. The iterative process between the commitment problem and the feasibility check subproblem will continue until simulated wind power scenarios can be accommodated by redispatch. Numerical simulations indicate the effectiveness of the proposed SCUC algorithm for managing the security of power system operation by taking into account the intermittency and volatility of wind power generation.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2008.926719