Analysis of High-throughput DNA Methylation Bead Arrays Utilizing Bayesian Genotyping Algorithms
We present a statistical framework, MAMS-M, for determining the methylation status of hundreds of cancer related CpG sites. MAMS-M extends and adapts our previous SNP genotyping algorithm, MAMS, to methylation bead array data, exploiting the similarities in data structure between the two platforms....
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a statistical framework, MAMS-M, for determining the methylation status of hundreds of cancer related CpG sites. MAMS-M extends and adapts our previous SNP genotyping algorithm, MAMS, to methylation bead array data, exploiting the similarities in data structure between the two platforms. MAMS-M employs a multi-site, multi-array model-based clustering approach to derive initial methylation calls, and then recalibrate these calls and associated confidence measures using site-specific adjustments. We demonstrate the performance of MAMS-M using a real-life data set with cancer applications. |
---|---|
ISSN: | 1948-2914 1948-2922 |
DOI: | 10.1109/BMEI.2008.150 |