Analysis of High-throughput DNA Methylation Bead Arrays Utilizing Bayesian Genotyping Algorithms

We present a statistical framework, MAMS-M, for determining the methylation status of hundreds of cancer related CpG sites. MAMS-M extends and adapts our previous SNP genotyping algorithm, MAMS, to methylation bead array data, exploiting the similarities in data structure between the two platforms....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yuanyuan Xiao, Segal, M.R., Houseman, E.A., Wiemels, J., Wiencke, J., Shichun Zheng, Wrensch, M., Christensen, B., Marsit, C., Kelsey, K., Nelson, H., Karagas, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a statistical framework, MAMS-M, for determining the methylation status of hundreds of cancer related CpG sites. MAMS-M extends and adapts our previous SNP genotyping algorithm, MAMS, to methylation bead array data, exploiting the similarities in data structure between the two platforms. MAMS-M employs a multi-site, multi-array model-based clustering approach to derive initial methylation calls, and then recalibrate these calls and associated confidence measures using site-specific adjustments. We demonstrate the performance of MAMS-M using a real-life data set with cancer applications.
ISSN:1948-2914
1948-2922
DOI:10.1109/BMEI.2008.150