EECCP: an energy-efficient coverage- and connectivity preserving algorithm under border effects in wireless sensor networks

Wireless sensor networks (WSNs) can be used to monitor the interested region using multi-hop communication. Coverage is a primary metric to evaluate the capacity of monitoring. Connectivity also needs to be guaranteed so that the sink node can receive all sensed data from the region for future proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yan Jin, Ju-Yeon Jo, Yoohwan Kim, Yingtao Jiang, Mei Yang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wireless sensor networks (WSNs) can be used to monitor the interested region using multi-hop communication. Coverage is a primary metric to evaluate the capacity of monitoring. Connectivity also needs to be guaranteed so that the sink node can receive all sensed data from the region for future processing. In this paper, a connected full/partial coverage problem under border effects is studied. We consider the scenario where the sensor nodes are distributed in a circle-shaped region randomly. First, the network coverage provided by N nodes is derived by the mathematical expression exactly. Then the lower bound of the network connectivity probability is also derived. Since nodes are equipped with energy-limited batteries, energy conservation in such networks is of paramount importance to prolong the network lifetime. Accordingly, we propose a location-independent, energy-efficient data routing algorithm EECCP which considers the network coverage and sensor connectivity simultaneously. Compared with other related algorithms, the extensive simulation results demonstrate that our algorithm can achieve the connected, full/partial coverage requirement.
ISSN:1934-5070
2690-8336
DOI:10.1109/WTS.2008.4547581