A body joint improves vertical to horizontal transitions of a wall-climbing robot
Several recently-designed robots are able to scale steep surfaces using animal-inspired strategies for foot attachment and leg kinematics. These designs could be valuable for reaching high vantage points or for overcoming large obstacles. However, most of these robots cannot transition between inter...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several recently-designed robots are able to scale steep surfaces using animal-inspired strategies for foot attachment and leg kinematics. These designs could be valuable for reaching high vantage points or for overcoming large obstacles. However, most of these robots cannot transition between intersecting surfaces. For example, our previous Climbing Mini-Whegs TM robot cannot make a 90deg transition from a vertical wall up onto a flat horizontal surface. It is known that cockroaches bend their body to accomplish such transitions. This concept has been simplified to a single-axis body joint which allows ground-walking robots to cross uneven terrain. In this work, we examine the effect of a body joint on wall-climbing vehicles using both a kinematic simulation and two prototype Climbing Mini-Whegs TM robots. The simulation accurately predicts that the better design has the body joint axle closer to the center of the robot than to the front wheel- legs for orthogonal exterior transitions for a wide range of initial conditions. In the future, the methods and principles demonstrated here could be used to improve the design of climbing robots for other environments. |
---|---|
ISSN: | 1050-4729 2577-087X |
DOI: | 10.1109/ROBOT.2008.4543673 |