Efficient linear macromodeling via least-squares response approximation
We present a least-squares (LS) algorithm for rational function macromodeling of port-to-port responses with discrete-time sampled data. The core routine involves over-determined equations and filtering operation, and avoids numerical-sensitive calculation and initial pole assignment. We demonstrate...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a least-squares (LS) algorithm for rational function macromodeling of port-to-port responses with discrete-time sampled data. The core routine involves over-determined equations and filtering operation, and avoids numerical-sensitive calculation and initial pole assignment. We demonstrate the fast computation and excellent accuracy and robustness, even with noisy data, in stable response approximation. |
---|---|
ISSN: | 0271-4302 2158-1525 |
DOI: | 10.1109/ISCAS.2008.4542087 |