Efficient linear macromodeling via least-squares response approximation

We present a least-squares (LS) algorithm for rational function macromodeling of port-to-port responses with discrete-time sampled data. The core routine involves over-determined equations and filtering operation, and avoids numerical-sensitive calculation and initial pole assignment. We demonstrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lei, Chi-Un, Kwan, Hing-Kit, Liu, Yansong, Wong, Ngai
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a least-squares (LS) algorithm for rational function macromodeling of port-to-port responses with discrete-time sampled data. The core routine involves over-determined equations and filtering operation, and avoids numerical-sensitive calculation and initial pole assignment. We demonstrate the fast computation and excellent accuracy and robustness, even with noisy data, in stable response approximation.
ISSN:0271-4302
2158-1525
DOI:10.1109/ISCAS.2008.4542087