A Genetic Algorithm for Finding Minimal Multi-homogeneous Bézout Number
Homotopy continuation is a most efficient numerical method for finding all isolated solutions of system of polynomial equations, and finding minimal multi-homogeneous Bezout number is a basic problem of homotopy continuation. This paper presents a problem-specific genetic algorithm for finding minim...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 305 |
---|---|
container_issue | |
container_start_page | 301 |
container_title | |
container_volume | |
creator | Dongshu Yan Jintao Zhang Bo Yu Changtong Luo Shaoliang Zhang |
description | Homotopy continuation is a most efficient numerical method for finding all isolated solutions of system of polynomial equations, and finding minimal multi-homogeneous Bezout number is a basic problem of homotopy continuation. This paper presents a problem-specific genetic algorithm for finding minimal multi-homogeneous Bezout number. The algorithm is easy to implement and easy to be parallelized for large scale problems. It can find the minimal multi-homogeneous Bezout number in probability 1. Numerical results indicate that the proposed algorithm is reliable and efficient. The algorithm offers a competitive alternative for minimal multi-homogeneous Bezout number problem. Meanwhile, it extends the application fields of genetic algorithms. |
doi_str_mv | 10.1109/ICIS.2008.38 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4529836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4529836</ieee_id><sourcerecordid>4529836</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c0e06c9ef646837b8af8a1bdaff691dfa38213936d3625f00df0fb705dfad0e63</originalsourceid><addsrcrecordid>eNotjrtOwzAYhS2hSkDJxsbiF0j57T_xZQwRbSO1MABzlcR2apTEKJcB3ojn4MWIBGc5w_fp6BByy2DDGOj7Ii9eNhxAbVBdkEhLBVLoFBkytiLXC5E6QSH5JYnG8R2WoE5A8Suyz-jO9nbyNc3aJgx-OnfUhYFufW9839Cj731XtvQ4t5OPz6ELzeKHeaQPP99fYZ7o09xVdrghK1e2o43-e03eto-v-T4-PO-KPDvEnsl0imuwIGptnUiEQlmp0qmSVaZ0TmhmXImKM9QoDAqeOgDjwFUS0gUZsALX5O5v11trTx_Dcm74PCUp1woF_gKhs01O</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Genetic Algorithm for Finding Minimal Multi-homogeneous Bézout Number</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dongshu Yan ; Jintao Zhang ; Bo Yu ; Changtong Luo ; Shaoliang Zhang</creator><creatorcontrib>Dongshu Yan ; Jintao Zhang ; Bo Yu ; Changtong Luo ; Shaoliang Zhang</creatorcontrib><description>Homotopy continuation is a most efficient numerical method for finding all isolated solutions of system of polynomial equations, and finding minimal multi-homogeneous Bezout number is a basic problem of homotopy continuation. This paper presents a problem-specific genetic algorithm for finding minimal multi-homogeneous Bezout number. The algorithm is easy to implement and easy to be parallelized for large scale problems. It can find the minimal multi-homogeneous Bezout number in probability 1. Numerical results indicate that the proposed algorithm is reliable and efficient. The algorithm offers a competitive alternative for minimal multi-homogeneous Bezout number problem. Meanwhile, it extends the application fields of genetic algorithms.</description><identifier>ISBN: 9780769531311</identifier><identifier>ISBN: 0769531318</identifier><identifier>DOI: 10.1109/ICIS.2008.38</identifier><identifier>LCCN: 2007943672</identifier><language>eng</language><publisher>IEEE</publisher><subject>Civil engineering ; Computer architecture ; Equations ; genetic algorithm ; Genetic algorithms ; heuristics ; Information science ; Isolation technology ; Large-scale systems ; Mathematics ; minimal multi-homogeneous Bezout number ; polynomial equations ; Polynomials ; Upper bound</subject><ispartof>Seventh IEEE/ACIS International Conference on Computer and Information Science (icis 2008), 2008, p.301-305</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4529836$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4529836$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dongshu Yan</creatorcontrib><creatorcontrib>Jintao Zhang</creatorcontrib><creatorcontrib>Bo Yu</creatorcontrib><creatorcontrib>Changtong Luo</creatorcontrib><creatorcontrib>Shaoliang Zhang</creatorcontrib><title>A Genetic Algorithm for Finding Minimal Multi-homogeneous Bézout Number</title><title>Seventh IEEE/ACIS International Conference on Computer and Information Science (icis 2008)</title><addtitle>ICIS</addtitle><description>Homotopy continuation is a most efficient numerical method for finding all isolated solutions of system of polynomial equations, and finding minimal multi-homogeneous Bezout number is a basic problem of homotopy continuation. This paper presents a problem-specific genetic algorithm for finding minimal multi-homogeneous Bezout number. The algorithm is easy to implement and easy to be parallelized for large scale problems. It can find the minimal multi-homogeneous Bezout number in probability 1. Numerical results indicate that the proposed algorithm is reliable and efficient. The algorithm offers a competitive alternative for minimal multi-homogeneous Bezout number problem. Meanwhile, it extends the application fields of genetic algorithms.</description><subject>Civil engineering</subject><subject>Computer architecture</subject><subject>Equations</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>heuristics</subject><subject>Information science</subject><subject>Isolation technology</subject><subject>Large-scale systems</subject><subject>Mathematics</subject><subject>minimal multi-homogeneous Bezout number</subject><subject>polynomial equations</subject><subject>Polynomials</subject><subject>Upper bound</subject><isbn>9780769531311</isbn><isbn>0769531318</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjrtOwzAYhS2hSkDJxsbiF0j57T_xZQwRbSO1MABzlcR2apTEKJcB3ojn4MWIBGc5w_fp6BByy2DDGOj7Ii9eNhxAbVBdkEhLBVLoFBkytiLXC5E6QSH5JYnG8R2WoE5A8Suyz-jO9nbyNc3aJgx-OnfUhYFufW9839Cj731XtvQ4t5OPz6ELzeKHeaQPP99fYZ7o09xVdrghK1e2o43-e03eto-v-T4-PO-KPDvEnsl0imuwIGptnUiEQlmp0qmSVaZ0TmhmXImKM9QoDAqeOgDjwFUS0gUZsALX5O5v11trTx_Dcm74PCUp1woF_gKhs01O</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Dongshu Yan</creator><creator>Jintao Zhang</creator><creator>Bo Yu</creator><creator>Changtong Luo</creator><creator>Shaoliang Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>A Genetic Algorithm for Finding Minimal Multi-homogeneous Bézout Number</title><author>Dongshu Yan ; Jintao Zhang ; Bo Yu ; Changtong Luo ; Shaoliang Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c0e06c9ef646837b8af8a1bdaff691dfa38213936d3625f00df0fb705dfad0e63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Civil engineering</topic><topic>Computer architecture</topic><topic>Equations</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>heuristics</topic><topic>Information science</topic><topic>Isolation technology</topic><topic>Large-scale systems</topic><topic>Mathematics</topic><topic>minimal multi-homogeneous Bezout number</topic><topic>polynomial equations</topic><topic>Polynomials</topic><topic>Upper bound</topic><toplevel>online_resources</toplevel><creatorcontrib>Dongshu Yan</creatorcontrib><creatorcontrib>Jintao Zhang</creatorcontrib><creatorcontrib>Bo Yu</creatorcontrib><creatorcontrib>Changtong Luo</creatorcontrib><creatorcontrib>Shaoliang Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dongshu Yan</au><au>Jintao Zhang</au><au>Bo Yu</au><au>Changtong Luo</au><au>Shaoliang Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Genetic Algorithm for Finding Minimal Multi-homogeneous Bézout Number</atitle><btitle>Seventh IEEE/ACIS International Conference on Computer and Information Science (icis 2008)</btitle><stitle>ICIS</stitle><date>2008-05</date><risdate>2008</risdate><spage>301</spage><epage>305</epage><pages>301-305</pages><isbn>9780769531311</isbn><isbn>0769531318</isbn><abstract>Homotopy continuation is a most efficient numerical method for finding all isolated solutions of system of polynomial equations, and finding minimal multi-homogeneous Bezout number is a basic problem of homotopy continuation. This paper presents a problem-specific genetic algorithm for finding minimal multi-homogeneous Bezout number. The algorithm is easy to implement and easy to be parallelized for large scale problems. It can find the minimal multi-homogeneous Bezout number in probability 1. Numerical results indicate that the proposed algorithm is reliable and efficient. The algorithm offers a competitive alternative for minimal multi-homogeneous Bezout number problem. Meanwhile, it extends the application fields of genetic algorithms.</abstract><pub>IEEE</pub><doi>10.1109/ICIS.2008.38</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769531311 |
ispartof | Seventh IEEE/ACIS International Conference on Computer and Information Science (icis 2008), 2008, p.301-305 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4529836 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Civil engineering Computer architecture Equations genetic algorithm Genetic algorithms heuristics Information science Isolation technology Large-scale systems Mathematics minimal multi-homogeneous Bezout number polynomial equations Polynomials Upper bound |
title | A Genetic Algorithm for Finding Minimal Multi-homogeneous Bézout Number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Genetic%20Algorithm%20for%20Finding%20Minimal%20Multi-homogeneous%20B%C3%A9zout%20Number&rft.btitle=Seventh%20IEEE/ACIS%20International%20Conference%20on%20Computer%20and%20Information%20Science%20(icis%202008)&rft.au=Dongshu%20Yan&rft.date=2008-05&rft.spage=301&rft.epage=305&rft.pages=301-305&rft.isbn=9780769531311&rft.isbn_list=0769531318&rft_id=info:doi/10.1109/ICIS.2008.38&rft_dat=%3Cieee_6IE%3E4529836%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4529836&rfr_iscdi=true |