A Genetic Algorithm for Finding Minimal Multi-homogeneous Bézout Number

Homotopy continuation is a most efficient numerical method for finding all isolated solutions of system of polynomial equations, and finding minimal multi-homogeneous Bezout number is a basic problem of homotopy continuation. This paper presents a problem-specific genetic algorithm for finding minim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dongshu Yan, Jintao Zhang, Bo Yu, Changtong Luo, Shaoliang Zhang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Homotopy continuation is a most efficient numerical method for finding all isolated solutions of system of polynomial equations, and finding minimal multi-homogeneous Bezout number is a basic problem of homotopy continuation. This paper presents a problem-specific genetic algorithm for finding minimal multi-homogeneous Bezout number. The algorithm is easy to implement and easy to be parallelized for large scale problems. It can find the minimal multi-homogeneous Bezout number in probability 1. Numerical results indicate that the proposed algorithm is reliable and efficient. The algorithm offers a competitive alternative for minimal multi-homogeneous Bezout number problem. Meanwhile, it extends the application fields of genetic algorithms.
DOI:10.1109/ICIS.2008.38