Sensor Selection for Multiple Sensor Emitter Location Systems
Multiple sensors can locate an emitter by sharing data between pairs of sensors and computing time/frequency-difference-of-arrival (TDOA/FDOA). We address optimal selection of a subset of sensors to reduce the needed network capacity. Fisher information is used to assess the data quality and geometr...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiple sensors can locate an emitter by sharing data between pairs of sensors and computing time/frequency-difference-of-arrival (TDOA/FDOA). We address optimal selection of a subset of sensors to reduce the needed network capacity. Fisher information is used to assess the data quality and geometric impact to manage the network to optimize the location accuracy subject to communication constraints. We propose various approaches and discuss trade-offs. The first method assumes that the sensors have been pre-paired. The second method optimally determines pairings as well as selections of pairs but with the constraint that no sensors are shared between pairs. The third method consists of allowing sensors to be shared between pairs. The first method is simple to solve but clearly the pre-pairing requirement makes this method very sub-optimal. In the second method, it is simple to evaluate the Fisher information but is challenging to make the optimal selections of sensors. However, the opposite is true in the third method: it is more challenging to evaluate the Fisher information but is simple to make the optimal selections of sensors. |
---|---|
ISSN: | 1095-323X 2996-2358 |
DOI: | 10.1109/AERO.2008.4526431 |