A 90nm CMOS 60GHz Radio
CMOS-based circuits operating at mm-wave frequencies have emerged in the past few years. This paper discusses the integration of a 60GHz CMOS single-chip transmitter and a single- chip receiver using a standard 90nm CMOS technology demonstrating a reliable solution for 60GHz single-chip radio. Prope...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CMOS-based circuits operating at mm-wave frequencies have emerged in the past few years. This paper discusses the integration of a 60GHz CMOS single-chip transmitter and a single- chip receiver using a standard 90nm CMOS technology demonstrating a reliable solution for 60GHz single-chip radio. Proper transistor layout, complete and accurate modeling and optimized parasitic extraction method enabled the robust design of the wideband super-heterodyne architecture to support the entire 57- to-66GHz band. The analog radio front-end is controlled by a serial digital interface and has been co-designed and integrated together with a high-speed digital signal processor including analog-to-digital conversion, high speed PHY signal processing such as frequency-offset compensation, phase tracking, FIR and DFE, to support both advanced OFDM and SCBT modulation scheme. The resulting single-chip solution enables data throughputs exceeding 7Gb/s (QPSK) and 15Gb/s (16QAM) for a total DC power budget of below 200mW in TDD operation. In combination with a low-cost FR4-based packaging technology, it provides a high-performance cost-effective solution for a wide range of high volume consumer electronic applications. |
---|---|
ISSN: | 0193-6530 2376-8606 |
DOI: | 10.1109/ISSCC.2008.4523091 |