Word/sub-word lattices decomposition and combination for speech recognition

This paper presents the benefit of using multiple lexical units in the post-processing stage of an ASR system. Since the use of sub-word units can reduce the high out-of-vocabulary rate and improve the lack of text resources in statistical language modeling, we propose several methods to decompose,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Viet-Bac Le, Sopheap Seng, Besacier, L., Bigi, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the benefit of using multiple lexical units in the post-processing stage of an ASR system. Since the use of sub-word units can reduce the high out-of-vocabulary rate and improve the lack of text resources in statistical language modeling, we propose several methods to decompose, normalize and combine word and sub-word lattices generated from different ASR systems. By using a sub-word information table, every word in a lattice can be decomposed into sub-word units. These decomposed lattices can be combined into a common lattice in order to generate a confusion network. This lattices combination scheme results in an absolute syllable error rate reduction of about 1.4% over the sentence MAP baseline method for a Vietnamese ASR task. By comparing with the N-best lists combination and voting method, the proposed method works better.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2008.4518611