GMM/SVM N-best speaker identification under mismatch channel conditions

Under severe channel mismatch conditions, such as training with far-field speech and testing with telephone data, performance of speaker identification (SID) degrades significantly, often below practical use. But for many SID tasks, it is sufficient to recognize an N-best list of speakers for furthe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zeljkovic, I., Haffner, P., Amento, B., Wilpon, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Under severe channel mismatch conditions, such as training with far-field speech and testing with telephone data, performance of speaker identification (SID) degrades significantly, often below practical use. But for many SID tasks, it is sufficient to recognize an N-best list of speakers for further human analysis. We investigate N-best SID accuracy for matched (telephone/telephone) and mismatched (far-field/telephone) train/test channel conditions. Using an SVM-GMM supervector (GSV), pitch and formant frequency histograms (PFH) and cross-channel adaptation using cohorts, we reduced matched channel error rate by over 25% relative to the baseline (GMM-UBM), for top-1, and achieved mismatched N-best accuracy comparable to the baseline.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2008.4518563