Distributed Kalman filtering based on quantized innovations

We consider state estimation of a Markov stochastic process using an ad hoc wireless sensor network (WSN) based on noisy linear observations. Due to power and bandwidth constraints present in resource- limited WSNs, the observations are quantized before transmission. We derive a distributed recursiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Msechu, E.J., Ribeiro, A., Roumeliotis, S.I., Giannakis, G.B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider state estimation of a Markov stochastic process using an ad hoc wireless sensor network (WSN) based on noisy linear observations. Due to power and bandwidth constraints present in resource- limited WSNs, the observations are quantized before transmission. We derive a distributed recursive mean-square error (MSE) optimal quantizer-estimator based on the quantized observations. The resultant Kalman-like algorithm based on quantized observations exhibits MSE performance and computational complexity comparable to the Kalman filter based on un-quantized observations even for 2-3 bits of quantization per observation.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2008.4518354