Sparse and shift-invariant feature extraction from non-negative data

In this paper we describe a technique that allows the extraction of multiple local shift-invariant features from analysis of non-negative data of arbitrary dimensionality. Our approach employs a probabilistic latent variable model with sparsity constraints. We demonstrate its utility by performing f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Smaragdis, P., Raj, B., Shashanka, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we describe a technique that allows the extraction of multiple local shift-invariant features from analysis of non-negative data of arbitrary dimensionality. Our approach employs a probabilistic latent variable model with sparsity constraints. We demonstrate its utility by performing feature extraction in a variety of domains ranging from audio to images and video.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2008.4518048