Determining the parameters in regularized super-resolution reconstruction

We derive a novel method to determine the parameters for regularized super-resolution problems. The proposed approach relies on the Joint Maximum a Posteriori (JMAP) estimation technique. The classical JMAP technique provides solutions at low computational cost, but it may be unstable and presents m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zibetti, M.V.W., Mayer, J., Bazan, F.S.V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 856
container_issue
container_start_page 853
container_title
container_volume
creator Zibetti, M.V.W.
Mayer, J.
Bazan, F.S.V.
description We derive a novel method to determine the parameters for regularized super-resolution problems. The proposed approach relies on the Joint Maximum a Posteriori (JMAP) estimation technique. The classical JMAP technique provides solutions at low computational cost, but it may be unstable and presents multiple local minima. We propose to stabilize the JMAP estimation, while achieving a cost function with an unique global solution, by assuming a gamma prior distribution for the hyperparameters. The resulting fidelity is similar to the quality provided by the best methods such as the Evidence, which are computationally expensive. Experimental results illustrate the low complexity and stability of the proposed method.
doi_str_mv 10.1109/ICASSP.2008.4517744
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4517744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4517744</ieee_id><sourcerecordid>4517744</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-47a10e491ea3c02f8b48a7fe34536aab1709cfba264c3019eb7cb4ec0a1b918c3</originalsourceid><addsrcrecordid>eNo1UNtKxDAUjDdwXfsF-9IfaM1pTprmUdbbwoLCKvi2pPF0jfRG0j7o19viOi_DzMAwDGMr4CkA1zeb9e1u95JmnBcpSlAK8YRdAWaIgAXqU7bIhNIJaP5-xiKtiv9MiHO2AJnxJAfUlywK4YtPQCmklgu2uaOBfONa1x7i4ZPi3njTzF6IXRt7Ooy18e6HPuIw9uQTT6Grx8F1c2i7Ngx-tLO8ZheVqQNFR16yt4f71_VTsn1-nPZvEwdKDgkqA5xQAxlheVYVJRZGVSSmRbkxJSiubVWaLEcrOGgqlS2RLDdQaiisWLLVX68jon3vXWP89_74ivgFGdZUDA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Determining the parameters in regularized super-resolution reconstruction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zibetti, M.V.W. ; Mayer, J. ; Bazan, F.S.V.</creator><creatorcontrib>Zibetti, M.V.W. ; Mayer, J. ; Bazan, F.S.V.</creatorcontrib><description>We derive a novel method to determine the parameters for regularized super-resolution problems. The proposed approach relies on the Joint Maximum a Posteriori (JMAP) estimation technique. The classical JMAP technique provides solutions at low computational cost, but it may be unstable and presents multiple local minima. We propose to stabilize the JMAP estimation, while achieving a cost function with an unique global solution, by assuming a gamma prior distribution for the hyperparameters. The resulting fidelity is similar to the quality provided by the best methods such as the Evidence, which are computationally expensive. Experimental results illustrate the low complexity and stability of the proposed method.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424414833</identifier><identifier>ISBN: 1424414830</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1424414849</identifier><identifier>EISBN: 9781424414840</identifier><identifier>DOI: 10.1109/ICASSP.2008.4517744</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian estimation ; Bayesian methods ; Computational efficiency ; Cost function ; Interpolation ; Iterative methods ; JMAP ; Motion estimation ; Parameter estimation ; Pixel ; regularization ; Stability ; Strontium ; Super-resolution</subject><ispartof>2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.853-856</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4517744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4517744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zibetti, M.V.W.</creatorcontrib><creatorcontrib>Mayer, J.</creatorcontrib><creatorcontrib>Bazan, F.S.V.</creatorcontrib><title>Determining the parameters in regularized super-resolution reconstruction</title><title>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>We derive a novel method to determine the parameters for regularized super-resolution problems. The proposed approach relies on the Joint Maximum a Posteriori (JMAP) estimation technique. The classical JMAP technique provides solutions at low computational cost, but it may be unstable and presents multiple local minima. We propose to stabilize the JMAP estimation, while achieving a cost function with an unique global solution, by assuming a gamma prior distribution for the hyperparameters. The resulting fidelity is similar to the quality provided by the best methods such as the Evidence, which are computationally expensive. Experimental results illustrate the low complexity and stability of the proposed method.</description><subject>Bayesian estimation</subject><subject>Bayesian methods</subject><subject>Computational efficiency</subject><subject>Cost function</subject><subject>Interpolation</subject><subject>Iterative methods</subject><subject>JMAP</subject><subject>Motion estimation</subject><subject>Parameter estimation</subject><subject>Pixel</subject><subject>regularization</subject><subject>Stability</subject><subject>Strontium</subject><subject>Super-resolution</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424414833</isbn><isbn>1424414830</isbn><isbn>1424414849</isbn><isbn>9781424414840</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKxDAUjDdwXfsF-9IfaM1pTprmUdbbwoLCKvi2pPF0jfRG0j7o19viOi_DzMAwDGMr4CkA1zeb9e1u95JmnBcpSlAK8YRdAWaIgAXqU7bIhNIJaP5-xiKtiv9MiHO2AJnxJAfUlywK4YtPQCmklgu2uaOBfONa1x7i4ZPi3njTzF6IXRt7Ooy18e6HPuIw9uQTT6Grx8F1c2i7Ngx-tLO8ZheVqQNFR16yt4f71_VTsn1-nPZvEwdKDgkqA5xQAxlheVYVJRZGVSSmRbkxJSiubVWaLEcrOGgqlS2RLDdQaiisWLLVX68jon3vXWP89_74ivgFGdZUDA</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Zibetti, M.V.W.</creator><creator>Mayer, J.</creator><creator>Bazan, F.S.V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200803</creationdate><title>Determining the parameters in regularized super-resolution reconstruction</title><author>Zibetti, M.V.W. ; Mayer, J. ; Bazan, F.S.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-47a10e491ea3c02f8b48a7fe34536aab1709cfba264c3019eb7cb4ec0a1b918c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bayesian estimation</topic><topic>Bayesian methods</topic><topic>Computational efficiency</topic><topic>Cost function</topic><topic>Interpolation</topic><topic>Iterative methods</topic><topic>JMAP</topic><topic>Motion estimation</topic><topic>Parameter estimation</topic><topic>Pixel</topic><topic>regularization</topic><topic>Stability</topic><topic>Strontium</topic><topic>Super-resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Zibetti, M.V.W.</creatorcontrib><creatorcontrib>Mayer, J.</creatorcontrib><creatorcontrib>Bazan, F.S.V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zibetti, M.V.W.</au><au>Mayer, J.</au><au>Bazan, F.S.V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Determining the parameters in regularized super-resolution reconstruction</atitle><btitle>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2008-03</date><risdate>2008</risdate><spage>853</spage><epage>856</epage><pages>853-856</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424414833</isbn><isbn>1424414830</isbn><eisbn>1424414849</eisbn><eisbn>9781424414840</eisbn><abstract>We derive a novel method to determine the parameters for regularized super-resolution problems. The proposed approach relies on the Joint Maximum a Posteriori (JMAP) estimation technique. The classical JMAP technique provides solutions at low computational cost, but it may be unstable and presents multiple local minima. We propose to stabilize the JMAP estimation, while achieving a cost function with an unique global solution, by assuming a gamma prior distribution for the hyperparameters. The resulting fidelity is similar to the quality provided by the best methods such as the Evidence, which are computationally expensive. Experimental results illustrate the low complexity and stability of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2008.4517744</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.853-856
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4517744
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian estimation
Bayesian methods
Computational efficiency
Cost function
Interpolation
Iterative methods
JMAP
Motion estimation
Parameter estimation
Pixel
regularization
Stability
Strontium
Super-resolution
title Determining the parameters in regularized super-resolution reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Determining%20the%20parameters%20in%20regularized%20super-resolution%20reconstruction&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Zibetti,%20M.V.W.&rft.date=2008-03&rft.spage=853&rft.epage=856&rft.pages=853-856&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424414833&rft.isbn_list=1424414830&rft_id=info:doi/10.1109/ICASSP.2008.4517744&rft_dat=%3Cieee_6IE%3E4517744%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424414849&rft.eisbn_list=9781424414840&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4517744&rfr_iscdi=true