Determining the parameters in regularized super-resolution reconstruction

We derive a novel method to determine the parameters for regularized super-resolution problems. The proposed approach relies on the Joint Maximum a Posteriori (JMAP) estimation technique. The classical JMAP technique provides solutions at low computational cost, but it may be unstable and presents m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zibetti, M.V.W., Mayer, J., Bazan, F.S.V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive a novel method to determine the parameters for regularized super-resolution problems. The proposed approach relies on the Joint Maximum a Posteriori (JMAP) estimation technique. The classical JMAP technique provides solutions at low computational cost, but it may be unstable and presents multiple local minima. We propose to stabilize the JMAP estimation, while achieving a cost function with an unique global solution, by assuming a gamma prior distribution for the hyperparameters. The resulting fidelity is similar to the quality provided by the best methods such as the Evidence, which are computationally expensive. Experimental results illustrate the low complexity and stability of the proposed method.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2008.4517744