An Integrated Overview of the Open Literature's Empirical Data on the Indoor Radiowave Channel's Delay Properties

A comprehensive and integrative overview (excluding ultrawideband measurements) is given of all the empirical data available from the open literature on various temporal properties of the indoor radiowave communication channel. The concerned frequency range spans over 0.8-8 GHz. Originally, these da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2008-05, Vol.56 (5), p.1451-1468
Hauptverfasser: Awad, M.K., Wong, K.T., Zheng-bin Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A comprehensive and integrative overview (excluding ultrawideband measurements) is given of all the empirical data available from the open literature on various temporal properties of the indoor radiowave communication channel. The concerned frequency range spans over 0.8-8 GHz. Originally, these data were presented in about 70 papers in various journals, at diverse conferences, and in different books. Herein overviewed are the multipaths' amplitude versus arrival delay, the probability of multipath arrival versus arrival delay, the multipath amplitude's temporal correlation, the power delay profile and associated time dispersion parameters (e.g., the RMS delay spread and the mean delay), the coherence bandwidth, and empirically ldquotunedrdquo tapped-delay-line models. Supported by the present authors' new analysis, this paper discusses how these channel-fading metrics depend on the indoor radiowave propagation channel's various properties, (e.g., the physical environment, the floor layout, the construction materials, the furnishing's locations and electromagnetic properties) as well as the transmitted signal's carrier-frequency, the transmitting-antenna's location, the receiving-antenna's location, and the receiver's detection amplitude threshold.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2008.922171