Optimization of combined economic and emission dispatch problem - A comparative study

This paper presents an evolutionary computation (EC) method called genetic algorithm (GA) and a metaheuristic algorithm called ant colony search algorithm (ACSA) to solve the combined economic and emission dispatch (EED) problem with transmission losses. Economic load dispatch (ELD) and economic emi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bharathi, R., Kumar, M.J., Sunitha, D., Premalatha, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an evolutionary computation (EC) method called genetic algorithm (GA) and a metaheuristic algorithm called ant colony search algorithm (ACSA) to solve the combined economic and emission dispatch (EED) problem with transmission losses. Economic load dispatch (ELD) and economic emission dispatch (EED) have been applied to obtain optimal fuel cost and optimal emission of generating units, respectively. Combined economic emission dispatch (CEED) problem is obtained by considering both the economy and emission objectives. A real coded GA has been implemented to minimize both the dispatch cost as well as emission while satisfying all the equality and inequality constraints. ACSA is also developed to provide a means of comparison and it is a new cooperative agents approach, which is inspired by the observation of the behaviors of real ant colonies on the topic of ant trail formation and foraging methods. In the ACSA, a set of cooperating agents called "ants" cooperates to find a good solution for economic dispatch problem. The merits of ACSA are parallel search and optimization capabilities. The feasibility of the proposed method is tested on a power system network and the experimental results of both GA and ACSA are compared with the solutions of conventional Lamda iteration method.
ISSN:1947-1262
1947-1270