A Microprocessor-Controlled Fast-Response Speed Regulator with Dual Mode Current Loop for DCM Drives
A new control method is described in which a microprocessor is used to regulate the speed of a dc motor driven by antiparallel-connected three-phase dual thyristor converters. A distinct feature of this speed regulating system is that speed response is improved by using a fast-response current contr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 1980-05, Vol.IA-16 (3), p.388-394 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new control method is described in which a microprocessor is used to regulate the speed of a dc motor driven by antiparallel-connected three-phase dual thyristor converters. A distinct feature of this speed regulating system is that speed response is improved by using a fast-response current controller for the internal loop. A fast-response current controller is obtained by employing a nonlinear compensation subloop and a proportional plus integral compensation subloop. The nonlinear compensation subloop is used to linearize the nonlinear load characteristics of the thyristor converter, which are encountered under discontinuous conduction states of current. The proportional plus integral compensation subloop reduces the deviation of detected current from the current reference. With these two current-control subloops a fast motor speed response is achieved under discontinuous as well as continuous conduction states; hence the steady-state accuracy of speed is improved. A speed regulator using a microprocessor was trial manufactured and tested with a 20-kW dc motor. It was found that an extremely fast controlled current response can be obtained even with a relatively long sampling period. Further, normal action was confirmed in four-quadrant operation. |
---|---|
ISSN: | 0093-9994 1939-9367 |
DOI: | 10.1109/TIA.1980.4503800 |