Classification with missing data in a wireless sensor network
We have developed a novel method to estimate missing observations in wireless sensor networks. We use a hierarchical unsupervised fuzzy ART neural network to represent the data cluster prototypes and describe missing input patterns based on the network. We then estimate missing inputs by a spatial-t...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have developed a novel method to estimate missing observations in wireless sensor networks. We use a hierarchical unsupervised fuzzy ART neural network to represent the data cluster prototypes and describe missing input patterns based on the network. We then estimate missing inputs by a spatial-temporal imputation technique. Our experimental results show that our proposed approach performs better than nine other missing data imputation techniques including moving average and Expectation-Maximization (EM) imputation. |
---|---|
ISSN: | 1091-0050 1558-058X |
DOI: | 10.1109/SECON.2008.4494352 |