Classification with missing data in a wireless sensor network

We have developed a novel method to estimate missing observations in wireless sensor networks. We use a hierarchical unsupervised fuzzy ART neural network to represent the data cluster prototypes and describe missing input patterns based on the network. We then estimate missing inputs by a spatial-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yuan Yuan Li, Parker, L.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have developed a novel method to estimate missing observations in wireless sensor networks. We use a hierarchical unsupervised fuzzy ART neural network to represent the data cluster prototypes and describe missing input patterns based on the network. We then estimate missing inputs by a spatial-temporal imputation technique. Our experimental results show that our proposed approach performs better than nine other missing data imputation techniques including moving average and Expectation-Maximization (EM) imputation.
ISSN:1091-0050
1558-058X
DOI:10.1109/SECON.2008.4494352