Intruder detection using a wireless sensor network with an intelligent mobile robot response
In this paper, we present an intruder detection system that uses a wireless sensor network and mobile robots. The sensor network uses an unsupervised fuzzy Adaptive Resonance Theory (ART) neural network to learn and detect intruders in a previously unknown environment. Upon the detection of an intru...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present an intruder detection system that uses a wireless sensor network and mobile robots. The sensor network uses an unsupervised fuzzy Adaptive Resonance Theory (ART) neural network to learn and detect intruders in a previously unknown environment. Upon the detection of an intruder, a mobile robot travels to the position where the intruder is detected to investigate. The wireless sensor network uses a hierarchical communication/learning structure, where the mobile robot is the root node of the tree. Our fuzzy ART network is based on Kulakov and Davcev's implementation [6]. We enhanced the fuzzy ART neural network to learn a time-series and detect time-related changes using a Markov model. The proposed architecture is tested on physical hardware. Our results show that our enhanced detection system has a higher accuracy than the basic, original, fuzzy ART system. |
---|---|
ISSN: | 1091-0050 1558-058X |
DOI: | 10.1109/SECON.2008.4494250 |