Defect-Oriented Testing of RF Circuits
Radio-frequency (RF) test cost is soaring due to the increasing complexity of RF devices. Radically new test approaches that enable test time reduction while ensuring product quality are needed to reduce the overall product cost. In this paper, we present a test development methodology for RF circui...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2008-05, Vol.27 (5), p.920-931 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radio-frequency (RF) test cost is soaring due to the increasing complexity of RF devices. Radically new test approaches that enable test time reduction while ensuring product quality are needed to reduce the overall product cost. In this paper, we present a test development methodology for RF circuits based on novel parametric, open-circuit, and short-circuit defect models. We inject parametric defects as deviations in physical circuit parameters, such as resistances, transistor widths, and lengths, and inject open- and short-circuit defects into the critical locations that are derived from the layout using inductive fault analysis. Despite fault injection, we consider a circuit unacceptable only if it violates any one of the performance specifications. Our test development method aims at reducing not only the number of measurements but also the overall test hardware cost by incorporating the relative setup cost of each measurement into our selection criteria. Experimental results on an RF front-end device show that our test methodology reduces the test time by 50% and the number of test setups by 17% while identifying all unacceptable circuit instances with a 99% failure coverage without any yield loss. |
---|---|
ISSN: | 0278-0070 1937-4151 |
DOI: | 10.1109/TCAD.2008.917578 |