Determination of optimal polynomial regression function to decompose on-die systematic and random variations

A procedure that decomposes measured parametric device variation into systematic and random components is studied by considering the decomposition process as selecting the most suitable model for describing on-die spatial variation trend. In order to maximize model predictability, the log-likelihood...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sato, T., Ueyama, H., Nakayama, N., Masu, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A procedure that decomposes measured parametric device variation into systematic and random components is studied by considering the decomposition process as selecting the most suitable model for describing on-die spatial variation trend. In order to maximize model predictability, the log-likelihood estimate called corrected Akaike information criterion is adopted. Depending on on-die contours of underlying systematic variation, necessary and sufficient complexity of the systematic regression model is objectively and adaptively determined. The proposed procedure is applied to 90-nm threshold voltage data and found the low order polynomials describe systematic variation very well. Designing cost-effective variation monitoring circuits as well as appropriate model determination of on-die variation are hence facilitated.
ISSN:2153-6961
2153-697X
DOI:10.1109/ASPDAC.2008.4484006