An Affine Combination of Two LMS Adaptive Filters-Transient Mean-Square Analysis

This paper studies the statistical behavior of an affine combination of the outputs of two least mean-square (LMS) adaptive filters that simultaneously adapt using the same white Gaussian inputs. The purpose of the combination is to obtain an LMS adaptive filter with fast convergence and small stead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2008-05, Vol.56 (5), p.1853-1864
Hauptverfasser: Bershad, N.J., Bermudez, J.C.M., Tourneret, J.-Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the statistical behavior of an affine combination of the outputs of two least mean-square (LMS) adaptive filters that simultaneously adapt using the same white Gaussian inputs. The purpose of the combination is to obtain an LMS adaptive filter with fast convergence and small steady-state mean-square deviation (MSD). The linear combination studied is a generalization of the convex combination, in which the combination factor lambda(n) is restricted to the interval (0,1). The viewpoint is taken that each of the two filters produces dependent estimates of the unknown channel. Thus, there exists a sequence of optimal affine combining coefficients which minimizes the mean-square error (MSE). First, the optimal unrealizable affine combiner is studied and provides the best possible performance for this class. Then two new schemes are proposed for practical applications. The mean-square performances are analyzed and validated by Monte Carlo simulations. With proper design, the two practical schemes yield an overall MSD that is usually less than the MSDs of either filter.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2007.911486