Compressive Sampling and Lossy Compression

Recent results in compressive sampling have shown that sparse signals can be recovered from a small number of random measurements. This property raises the question of whether random measurements can provide an efficient representation of sparse signals in an information-theoretic sense. Through bot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing magazine 2008-03, Vol.25 (2), p.48-56
Hauptverfasser: Goyal, V.K., Fletcher, A.K., Rangan, S.
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 2
container_start_page 48
container_title IEEE signal processing magazine
container_volume 25
creator Goyal, V.K.
Fletcher, A.K.
Rangan, S.
description Recent results in compressive sampling have shown that sparse signals can be recovered from a small number of random measurements. This property raises the question of whether random measurements can provide an efficient representation of sparse signals in an information-theoretic sense. Through both theoretical and experimental results, we show that encoding a sparse signal through simple scalar quantization of random measurements incurs a significant penalty relative to direct or adaptive encoding of the sparse signal. Information theory provides alternative quantization strategies, but they come at the cost of much greater estimation complexity.
doi_str_mv 10.1109/MSP.2007.915001
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4472243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4472243</ieee_id><sourcerecordid>34845807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-ad40699103c87f74251623dfc2544cb65f3597ef632e20b9c742f4c88738b2c13</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_AgCtbq2YOXxYOIsG2SyWNylOILKgrVc9imWdmyL5NW6Lc3ZcWDB08zML8ZmD8h54xOGKNm-rx4nXBK9cQwSSk7ICMmJeZUG36Yeiohl4h4TE5iXCcgEMyI3My6pg8-xurLZ4ui6euq_ciKdpXNuxh32e-4a0_JUVnU0Z_91DF5v797mz3m85eHp9ntPHfAcZMXK0GVMYyCQ11qwSVTHFal41IIt1SyBGm0LxVwz-nSuERK4RA14JI7BmNyNdztQ_e59XFjmyo6X9dF67tttCBQSKQ6wet_IVOagVaoTKKXf-i624Y2vWFRAdOaC5HQdEAupN-DL20fqqYIO8uo3WdsU8Z2n7EdMk4bF8NG5b3_1UJozgXAN4XAdKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>863177244</pqid></control><display><type>magazinearticle</type><title>Compressive Sampling and Lossy Compression</title><source>IEEE Electronic Library (IEL)</source><creator>Goyal, V.K. ; Fletcher, A.K. ; Rangan, S.</creator><creatorcontrib>Goyal, V.K. ; Fletcher, A.K. ; Rangan, S.</creatorcontrib><description>Recent results in compressive sampling have shown that sparse signals can be recovered from a small number of random measurements. This property raises the question of whether random measurements can provide an efficient representation of sparse signals in an information-theoretic sense. Through both theoretical and experimental results, we show that encoding a sparse signal through simple scalar quantization of random measurements incurs a significant penalty relative to direct or adaptive encoding of the sparse signal. Information theory provides alternative quantization strategies, but they come at the cost of much greater estimation complexity.</description><identifier>ISSN: 1053-5888</identifier><identifier>EISSN: 1558-0792</identifier><identifier>DOI: 10.1109/MSP.2007.915001</identifier><identifier>CODEN: ISPRE6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compressing ; Costs ; Digital signal processing ; Encoding ; Image coding ; Information theory ; Loss measurement ; Quantization ; Representations ; Sampling ; Sampling methods ; Scalars ; Signal processing ; Signal sampling ; Size measurement ; Strategy</subject><ispartof>IEEE signal processing magazine, 2008-03, Vol.25 (2), p.48-56</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-ad40699103c87f74251623dfc2544cb65f3597ef632e20b9c742f4c88738b2c13</citedby><cites>FETCH-LOGICAL-c328t-ad40699103c87f74251623dfc2544cb65f3597ef632e20b9c742f4c88738b2c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4472243$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>777,781,793,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4472243$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goyal, V.K.</creatorcontrib><creatorcontrib>Fletcher, A.K.</creatorcontrib><creatorcontrib>Rangan, S.</creatorcontrib><title>Compressive Sampling and Lossy Compression</title><title>IEEE signal processing magazine</title><addtitle>MSP</addtitle><description>Recent results in compressive sampling have shown that sparse signals can be recovered from a small number of random measurements. This property raises the question of whether random measurements can provide an efficient representation of sparse signals in an information-theoretic sense. Through both theoretical and experimental results, we show that encoding a sparse signal through simple scalar quantization of random measurements incurs a significant penalty relative to direct or adaptive encoding of the sparse signal. Information theory provides alternative quantization strategies, but they come at the cost of much greater estimation complexity.</description><subject>Compressing</subject><subject>Costs</subject><subject>Digital signal processing</subject><subject>Encoding</subject><subject>Image coding</subject><subject>Information theory</subject><subject>Loss measurement</subject><subject>Quantization</subject><subject>Representations</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Scalars</subject><subject>Signal processing</subject><subject>Signal sampling</subject><subject>Size measurement</subject><subject>Strategy</subject><issn>1053-5888</issn><issn>1558-0792</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2008</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNp90EtLAzEQB_AgCtbq2YOXxYOIsG2SyWNylOILKgrVc9imWdmyL5NW6Lc3ZcWDB08zML8ZmD8h54xOGKNm-rx4nXBK9cQwSSk7ICMmJeZUG36Yeiohl4h4TE5iXCcgEMyI3My6pg8-xurLZ4ui6euq_ciKdpXNuxh32e-4a0_JUVnU0Z_91DF5v797mz3m85eHp9ntPHfAcZMXK0GVMYyCQ11qwSVTHFal41IIt1SyBGm0LxVwz-nSuERK4RA14JI7BmNyNdztQ_e59XFjmyo6X9dF67tttCBQSKQ6wet_IVOagVaoTKKXf-i624Y2vWFRAdOaC5HQdEAupN-DL20fqqYIO8uo3WdsU8Z2n7EdMk4bF8NG5b3_1UJozgXAN4XAdKw</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Goyal, V.K.</creator><creator>Fletcher, A.K.</creator><creator>Rangan, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080301</creationdate><title>Compressive Sampling and Lossy Compression</title><author>Goyal, V.K. ; Fletcher, A.K. ; Rangan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-ad40699103c87f74251623dfc2544cb65f3597ef632e20b9c742f4c88738b2c13</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Compressing</topic><topic>Costs</topic><topic>Digital signal processing</topic><topic>Encoding</topic><topic>Image coding</topic><topic>Information theory</topic><topic>Loss measurement</topic><topic>Quantization</topic><topic>Representations</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Scalars</topic><topic>Signal processing</topic><topic>Signal sampling</topic><topic>Size measurement</topic><topic>Strategy</topic><toplevel>online_resources</toplevel><creatorcontrib>Goyal, V.K.</creatorcontrib><creatorcontrib>Fletcher, A.K.</creatorcontrib><creatorcontrib>Rangan, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goyal, V.K.</au><au>Fletcher, A.K.</au><au>Rangan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressive Sampling and Lossy Compression</atitle><jtitle>IEEE signal processing magazine</jtitle><stitle>MSP</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>25</volume><issue>2</issue><spage>48</spage><epage>56</epage><pages>48-56</pages><issn>1053-5888</issn><eissn>1558-0792</eissn><coden>ISPRE6</coden><abstract>Recent results in compressive sampling have shown that sparse signals can be recovered from a small number of random measurements. This property raises the question of whether random measurements can provide an efficient representation of sparse signals in an information-theoretic sense. Through both theoretical and experimental results, we show that encoding a sparse signal through simple scalar quantization of random measurements incurs a significant penalty relative to direct or adaptive encoding of the sparse signal. Information theory provides alternative quantization strategies, but they come at the cost of much greater estimation complexity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MSP.2007.915001</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-5888
ispartof IEEE signal processing magazine, 2008-03, Vol.25 (2), p.48-56
issn 1053-5888
1558-0792
language eng
recordid cdi_ieee_primary_4472243
source IEEE Electronic Library (IEL)
subjects Compressing
Costs
Digital signal processing
Encoding
Image coding
Information theory
Loss measurement
Quantization
Representations
Sampling
Sampling methods
Scalars
Signal processing
Signal sampling
Size measurement
Strategy
title Compressive Sampling and Lossy Compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressive%20Sampling%20and%20Lossy%20Compression&rft.jtitle=IEEE%20signal%20processing%20magazine&rft.au=Goyal,%20V.K.&rft.date=2008-03-01&rft.volume=25&rft.issue=2&rft.spage=48&rft.epage=56&rft.pages=48-56&rft.issn=1053-5888&rft.eissn=1558-0792&rft.coden=ISPRE6&rft_id=info:doi/10.1109/MSP.2007.915001&rft_dat=%3Cproquest_RIE%3E34845807%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863177244&rft_id=info:pmid/&rft_ieee_id=4472243&rfr_iscdi=true