Compressive Sampling and Lossy Compression
Recent results in compressive sampling have shown that sparse signals can be recovered from a small number of random measurements. This property raises the question of whether random measurements can provide an efficient representation of sparse signals in an information-theoretic sense. Through bot...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing magazine 2008-03, Vol.25 (2), p.48-56 |
---|---|
Hauptverfasser: | , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 2 |
container_start_page | 48 |
container_title | IEEE signal processing magazine |
container_volume | 25 |
creator | Goyal, V.K. Fletcher, A.K. Rangan, S. |
description | Recent results in compressive sampling have shown that sparse signals can be recovered from a small number of random measurements. This property raises the question of whether random measurements can provide an efficient representation of sparse signals in an information-theoretic sense. Through both theoretical and experimental results, we show that encoding a sparse signal through simple scalar quantization of random measurements incurs a significant penalty relative to direct or adaptive encoding of the sparse signal. Information theory provides alternative quantization strategies, but they come at the cost of much greater estimation complexity. |
doi_str_mv | 10.1109/MSP.2007.915001 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4472243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4472243</ieee_id><sourcerecordid>34845807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-ad40699103c87f74251623dfc2544cb65f3597ef632e20b9c742f4c88738b2c13</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_AgCtbq2YOXxYOIsG2SyWNylOILKgrVc9imWdmyL5NW6Lc3ZcWDB08zML8ZmD8h54xOGKNm-rx4nXBK9cQwSSk7ICMmJeZUG36Yeiohl4h4TE5iXCcgEMyI3My6pg8-xurLZ4ui6euq_ciKdpXNuxh32e-4a0_JUVnU0Z_91DF5v797mz3m85eHp9ntPHfAcZMXK0GVMYyCQ11qwSVTHFal41IIt1SyBGm0LxVwz-nSuERK4RA14JI7BmNyNdztQ_e59XFjmyo6X9dF67tttCBQSKQ6wet_IVOagVaoTKKXf-i624Y2vWFRAdOaC5HQdEAupN-DL20fqqYIO8uo3WdsU8Z2n7EdMk4bF8NG5b3_1UJozgXAN4XAdKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>863177244</pqid></control><display><type>magazinearticle</type><title>Compressive Sampling and Lossy Compression</title><source>IEEE Electronic Library (IEL)</source><creator>Goyal, V.K. ; Fletcher, A.K. ; Rangan, S.</creator><creatorcontrib>Goyal, V.K. ; Fletcher, A.K. ; Rangan, S.</creatorcontrib><description>Recent results in compressive sampling have shown that sparse signals can be recovered from a small number of random measurements. This property raises the question of whether random measurements can provide an efficient representation of sparse signals in an information-theoretic sense. Through both theoretical and experimental results, we show that encoding a sparse signal through simple scalar quantization of random measurements incurs a significant penalty relative to direct or adaptive encoding of the sparse signal. Information theory provides alternative quantization strategies, but they come at the cost of much greater estimation complexity.</description><identifier>ISSN: 1053-5888</identifier><identifier>EISSN: 1558-0792</identifier><identifier>DOI: 10.1109/MSP.2007.915001</identifier><identifier>CODEN: ISPRE6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compressing ; Costs ; Digital signal processing ; Encoding ; Image coding ; Information theory ; Loss measurement ; Quantization ; Representations ; Sampling ; Sampling methods ; Scalars ; Signal processing ; Signal sampling ; Size measurement ; Strategy</subject><ispartof>IEEE signal processing magazine, 2008-03, Vol.25 (2), p.48-56</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-ad40699103c87f74251623dfc2544cb65f3597ef632e20b9c742f4c88738b2c13</citedby><cites>FETCH-LOGICAL-c328t-ad40699103c87f74251623dfc2544cb65f3597ef632e20b9c742f4c88738b2c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4472243$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>777,781,793,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4472243$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goyal, V.K.</creatorcontrib><creatorcontrib>Fletcher, A.K.</creatorcontrib><creatorcontrib>Rangan, S.</creatorcontrib><title>Compressive Sampling and Lossy Compression</title><title>IEEE signal processing magazine</title><addtitle>MSP</addtitle><description>Recent results in compressive sampling have shown that sparse signals can be recovered from a small number of random measurements. This property raises the question of whether random measurements can provide an efficient representation of sparse signals in an information-theoretic sense. Through both theoretical and experimental results, we show that encoding a sparse signal through simple scalar quantization of random measurements incurs a significant penalty relative to direct or adaptive encoding of the sparse signal. Information theory provides alternative quantization strategies, but they come at the cost of much greater estimation complexity.</description><subject>Compressing</subject><subject>Costs</subject><subject>Digital signal processing</subject><subject>Encoding</subject><subject>Image coding</subject><subject>Information theory</subject><subject>Loss measurement</subject><subject>Quantization</subject><subject>Representations</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Scalars</subject><subject>Signal processing</subject><subject>Signal sampling</subject><subject>Size measurement</subject><subject>Strategy</subject><issn>1053-5888</issn><issn>1558-0792</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2008</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNp90EtLAzEQB_AgCtbq2YOXxYOIsG2SyWNylOILKgrVc9imWdmyL5NW6Lc3ZcWDB08zML8ZmD8h54xOGKNm-rx4nXBK9cQwSSk7ICMmJeZUG36Yeiohl4h4TE5iXCcgEMyI3My6pg8-xurLZ4ui6euq_ciKdpXNuxh32e-4a0_JUVnU0Z_91DF5v797mz3m85eHp9ntPHfAcZMXK0GVMYyCQ11qwSVTHFal41IIt1SyBGm0LxVwz-nSuERK4RA14JI7BmNyNdztQ_e59XFjmyo6X9dF67tttCBQSKQ6wet_IVOagVaoTKKXf-i624Y2vWFRAdOaC5HQdEAupN-DL20fqqYIO8uo3WdsU8Z2n7EdMk4bF8NG5b3_1UJozgXAN4XAdKw</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Goyal, V.K.</creator><creator>Fletcher, A.K.</creator><creator>Rangan, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080301</creationdate><title>Compressive Sampling and Lossy Compression</title><author>Goyal, V.K. ; Fletcher, A.K. ; Rangan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-ad40699103c87f74251623dfc2544cb65f3597ef632e20b9c742f4c88738b2c13</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Compressing</topic><topic>Costs</topic><topic>Digital signal processing</topic><topic>Encoding</topic><topic>Image coding</topic><topic>Information theory</topic><topic>Loss measurement</topic><topic>Quantization</topic><topic>Representations</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Scalars</topic><topic>Signal processing</topic><topic>Signal sampling</topic><topic>Size measurement</topic><topic>Strategy</topic><toplevel>online_resources</toplevel><creatorcontrib>Goyal, V.K.</creatorcontrib><creatorcontrib>Fletcher, A.K.</creatorcontrib><creatorcontrib>Rangan, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goyal, V.K.</au><au>Fletcher, A.K.</au><au>Rangan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressive Sampling and Lossy Compression</atitle><jtitle>IEEE signal processing magazine</jtitle><stitle>MSP</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>25</volume><issue>2</issue><spage>48</spage><epage>56</epage><pages>48-56</pages><issn>1053-5888</issn><eissn>1558-0792</eissn><coden>ISPRE6</coden><abstract>Recent results in compressive sampling have shown that sparse signals can be recovered from a small number of random measurements. This property raises the question of whether random measurements can provide an efficient representation of sparse signals in an information-theoretic sense. Through both theoretical and experimental results, we show that encoding a sparse signal through simple scalar quantization of random measurements incurs a significant penalty relative to direct or adaptive encoding of the sparse signal. Information theory provides alternative quantization strategies, but they come at the cost of much greater estimation complexity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MSP.2007.915001</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-5888 |
ispartof | IEEE signal processing magazine, 2008-03, Vol.25 (2), p.48-56 |
issn | 1053-5888 1558-0792 |
language | eng |
recordid | cdi_ieee_primary_4472243 |
source | IEEE Electronic Library (IEL) |
subjects | Compressing Costs Digital signal processing Encoding Image coding Information theory Loss measurement Quantization Representations Sampling Sampling methods Scalars Signal processing Signal sampling Size measurement Strategy |
title | Compressive Sampling and Lossy Compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressive%20Sampling%20and%20Lossy%20Compression&rft.jtitle=IEEE%20signal%20processing%20magazine&rft.au=Goyal,%20V.K.&rft.date=2008-03-01&rft.volume=25&rft.issue=2&rft.spage=48&rft.epage=56&rft.pages=48-56&rft.issn=1053-5888&rft.eissn=1558-0792&rft.coden=ISPRE6&rft_id=info:doi/10.1109/MSP.2007.915001&rft_dat=%3Cproquest_RIE%3E34845807%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863177244&rft_id=info:pmid/&rft_ieee_id=4472243&rfr_iscdi=true |