Compressive Sampling and Lossy Compression
Recent results in compressive sampling have shown that sparse signals can be recovered from a small number of random measurements. This property raises the question of whether random measurements can provide an efficient representation of sparse signals in an information-theoretic sense. Through bot...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing magazine 2008-03, Vol.25 (2), p.48-56 |
---|---|
Hauptverfasser: | , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent results in compressive sampling have shown that sparse signals can be recovered from a small number of random measurements. This property raises the question of whether random measurements can provide an efficient representation of sparse signals in an information-theoretic sense. Through both theoretical and experimental results, we show that encoding a sparse signal through simple scalar quantization of random measurements incurs a significant penalty relative to direct or adaptive encoding of the sparse signal. Information theory provides alternative quantization strategies, but they come at the cost of much greater estimation complexity. |
---|---|
ISSN: | 1053-5888 1558-0792 |
DOI: | 10.1109/MSP.2007.915001 |