Classifying ovarian tumors using Bayesian Multi-Layer Perceptrons and Automatic Relevance Determination: A multi-center study

Ovarian masses are common and a good pre-surgical assessment of their nature is important for adequate treatment. Bayesian Multi-Layer Perceptrons (MLPs) using the evidence procedure were used to predict whether tumors are malignant or not. Automatic Relevance Determination (ARD) is used to select t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006, Vol.2006, p.5342-5345
Hauptverfasser: Van Calster, B., Timmerman, D., Nabney, I.T., Valentin, L., Van Holsbeke, C., Van Huffel, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ovarian masses are common and a good pre-surgical assessment of their nature is important for adequate treatment. Bayesian Multi-Layer Perceptrons (MLPs) using the evidence procedure were used to predict whether tumors are malignant or not. Automatic Relevance Determination (ARD) is used to select the most relevant of the 40+ available variables. Cross-validation is used to select an optimal combination of input set and number of hidden neurons. The data set consists of 1066 tumors collected at nine centers across Europe. Results indicate good performance of the models with AUC values of 0.93-0.94 on independent data. A comparison with a Bayesian perceptron model shows that the present problem is to a large extent linearly separable. The analyses further show that the number of hidden neurons specified in the ARD analyses for input selection may influence model performance
ISSN:1557-170X
DOI:10.1109/IEMBS.2006.260118