An Adapted Gaussian Mixture Model Approach to Accelerometry-Based Movement Classification Using Time-Domain Features

The accurate classification of everyday movements from accelerometry data will provide a significant step towards the development of effective ambulatory monitoring systems for falls detection and prediction. The search continues for optimal front-end processing methods for use in accelerometry syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006, Vol.2006, p.3600-3603
Hauptverfasser: Allen, F.R., Ambikairajah, E., Lovell, N.H., Celler, B.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accurate classification of everyday movements from accelerometry data will provide a significant step towards the development of effective ambulatory monitoring systems for falls detection and prediction. The search continues for optimal front-end processing methods for use in accelerometry systems. Here, we propose a novel set of time domain features, which achieve a mean accuracy of 91.3% in distinguishing between three postures (sitting, standing and lying) and five movements (sit-to-stand, stand-to-sit, lie-to-stand, stand-to-lie and walking). This is a 39.2% relative improvement in error rate over more commonly used frequency based features. A method for adapting Gaussian Mixture Models to compensate for the problem of limited user-specific training data is also proposed and investigated. The method, which uses Bayesian adaptation, was found to improve classification performance for time domain features, offering a mean relative improvement of 20.2% over a non subject-specific system and 4.5% over a system trained using subject specific data only
ISSN:1557-170X
DOI:10.1109/IEMBS.2006.259613