Quantitative small animal fluorescence tomography using an ultra-fast gated image intensifier

Optical approaches to small animal in vivo molecular imaging provide high sensitivity, stable non-radioactive probes, and an extensive array of functional reporting strategies. However, quantitative whole body assays remain illusive. The quantitative accuracy of optical imaging is affected by the de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Patwardhan, S.V., Bloch, S., Achilefu, S., Culver, J.P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical approaches to small animal in vivo molecular imaging provide high sensitivity, stable non-radioactive probes, and an extensive array of functional reporting strategies. However, quantitative whole body assays remain illusive. The quantitative accuracy of optical imaging is affected by the depth of the buried target and the heterogeneity of tissue optical properties. Tomography approaches, to obtaining in-vivo optical property maps, and whole body distributions of fluorescing probes, provide a strategy for improving the quality and quantitative accuracy of small animal optical imaging. Here we present a time-resolved, charged coupled device (CCD) based system for quantitative small animal fluorescence tomography
ISSN:1557-170X
DOI:10.1109/IEMBS.2006.259942