Intelligent Arrhythmia Detection and Classification Using ICA
In this paper a novel approach for cardiac arrhythmias detection is proposed. The proposed method is based on using independent component analysis (ICA) and wavelet transform to extract important features. Using the extracted features different machine learning classification schemas, MLP and RBF ne...
Gespeichert in:
Veröffentlicht in: | 2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006, Vol.2006, p.2163-2166 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper a novel approach for cardiac arrhythmias detection is proposed. The proposed method is based on using independent component analysis (ICA) and wavelet transform to extract important features. Using the extracted features different machine learning classification schemas, MLP and RBF neural networks and K-nearest neighbor, are used to classify 274 instance signals from the MIT-BIH database. Simulations show that multilayer neural networks with Levenberg-Marquardt (LM) back propagation algorithm provide the optimal learning system. We were able to obtain 98.5% accuracy, which is an improvement in comparison with the similar works |
---|---|
ISSN: | 1557-170X |
DOI: | 10.1109/IEMBS.2006.259292 |