Model-Based Image Reconstruction for Dynamic Cardiac Perfusion MRI from Sparse Data
The paper presents a novel approach for dynamic magnetic resonance imaging (MRI) cardiac perfusion image reconstruction from sparse k-space data. It formulates the reconstruction problem in an inverse-methods setting. Relevant prior information is incorporated via a parametric model for the perfusio...
Gespeichert in:
Veröffentlicht in: | 2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006, Vol.2006, p.936-941 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper presents a novel approach for dynamic magnetic resonance imaging (MRI) cardiac perfusion image reconstruction from sparse k-space data. It formulates the reconstruction problem in an inverse-methods setting. Relevant prior information is incorporated via a parametric model for the perfusion process. This wealth of prior information empowers the proposed method to give high-quality reconstructions from very sparse k-space data. The paper presents reconstruction results using both Cartesian and radial sampling strategies using data simulated from a real acquisition. The proposed method produces high-quality reconstructions using 14% of the k-space data. The model-based approach can potentially greatly benefit cardiac myocardial perfusion studies as well as other dynamic contrast-enhanced MRI applications including tumor imaging |
---|---|
ISSN: | 1557-170X |
DOI: | 10.1109/IEMBS.2006.260363 |