Online Noise Estimation Using Stochastic-Gain HMM for Speech Enhancement

We propose a noise estimation algorithm for single-channel noise suppression in dynamic noisy environments. A stochastic-gain hidden Markov model (SG-HMM) is used to model the statistics of nonstationary noise with time-varying energy. The noise model is adaptive and the model parameters are estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2008-05, Vol.16 (4), p.835-846
Hauptverfasser: Zhao, D.Y., Kleijn, W.B., Ypma, A., de Vries, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a noise estimation algorithm for single-channel noise suppression in dynamic noisy environments. A stochastic-gain hidden Markov model (SG-HMM) is used to model the statistics of nonstationary noise with time-varying energy. The noise model is adaptive and the model parameters are estimated online from noisy observations using a recursive estimation algorithm. The parameter estimation is derived for the maximum-likelihood criterion and the algorithm is based on the recursive expectation maximization (EM) framework. The proposed method facilitates continuous adaptation to changes of both noise spectral shapes and noise energy levels, e.g., due to movement of the noise source. Using the estimated noise model, we also develop an estimator of the noise power spectral density (PSD) based on recursive averaging of estimated noise sample spectra. We demonstrate that the proposed scheme achieves more accurate estimates of the noise model and noise PSD, and as part of a speech enhancement system facilitates a lower level of residual noise.
ISSN:1558-7916
2329-9290
1063-6676
1558-2353
1558-7924
2329-9304
DOI:10.1109/TASL.2008.916055