A 1.1 GHz 12 \muA/Mb-Leakage SRAM Design in 65 nm Ultra-Low-Power CMOS Technology With Integrated Leakage Reduction for Mobile Applications
A low-power, high-speed SRAM macro is designed in a 65 nm ultra-low-power (ULP) logic technology for mobile applications. The 65 nm strained silicon technology improves transistor performance/leakage tradeoff, which is essential to achieve fast SRAM access speed at substantially low operating voltag...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2008-01, Vol.43 (1), p.172-179 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A low-power, high-speed SRAM macro is designed in a 65 nm ultra-low-power (ULP) logic technology for mobile applications. The 65 nm strained silicon technology improves transistor performance/leakage tradeoff, which is essential to achieve fast SRAM access speed at substantially low operating voltage and standby leakage. The 1 Mb SRAM macro features a 0.667 mum 2 low-leakage memory cell and can operate over a wide range of supply voltages from 1.2 V to 0.5 V. It achieves operating frequency of 1.1 GHz and 250 MHz at 1.2 V and 0.7 V, respectively. The SRAM leakage is reduced to 12 muA/Mb at the data retention voltage of 0.5 V. The measured bitcell leakage from the SRAM array is ~2 pA/bit at retention voltage with integrated leakage reduction schemes. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2007.907996 |