A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems
A Model Predictive Control (MPC) approach for controlling active front steering, active braking and active differentials in an autonomous vehicle is presented. We formulate a predictive control problem in order to best follow a given path by controlling the front steering angle, brakes and traction...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Model Predictive Control (MPC) approach for controlling active front steering, active braking and active differentials in an autonomous vehicle is presented. We formulate a predictive control problem in order to best follow a given path by controlling the front steering angle, brakes and traction at the four wheels independently, while fulfilling various physical and design constraints. At each time step a trajectory is assumed to be known over a finite horizon, and an MPC controller computes the system inputs in order to best follow the desired trajectory on slippery roads at a given entry speed. We start from the results presented in [1], [2] and formulate the MPC problem based on successive on-line linearization of the nonlinear vehicle model (LTV MPC). Simulative results are presented, interpreted and compared against LTV MPC schemes which make use only of steering and/or braking. |
---|---|
ISSN: | 0191-2216 |
DOI: | 10.1109/CDC.2007.4434137 |