Genetic algorithms for autonomous robot navigation
Engineers and scientists use instrumentation and measurement equipment to obtain information for specific environments, such as temperature and pressure. This task can be performed manually using portable gauges. However, there are many instances in which this approach may be impractical; when gathe...
Gespeichert in:
Veröffentlicht in: | IEEE instrumentation & measurement magazine 2007-12, Vol.10 (6), p.26-31 |
---|---|
Hauptverfasser: | , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Engineers and scientists use instrumentation and measurement equipment to obtain information for specific environments, such as temperature and pressure. This task can be performed manually using portable gauges. However, there are many instances in which this approach may be impractical; when gathering data from remote sites or from potentially hostile environments. In these applications, autonomous navigation methods allow a mobile robot to explore an environment independent of human presence or intervention. The mobile robot contains the measurement device and records the data then either transmits it or brings it back to the operator. Sensors are required for the robot to detect obstacles in the navigation environment, and machine intelligence is required for the robot to plan a path around these obstacles. The use of genetic algorithms is an example of machine intelligence applications to modern robot navigation. Genetic algorithms are heuristic optimization methods, which have mechanisms analogous to biological evolution. This article provides initial insight of autonomous navigation for mobile robots, a description of the sensors used to detect obstacles and a description of the genetic algorithms used for path planning. |
---|---|
ISSN: | 1094-6969 1941-0123 |
DOI: | 10.1109/MIM.2007.4428579 |