Biomechanical Design of a Powered Ankle-Foot Prosthesis
Although the potential benefits of a powered ankle-foot prosthesis have been well documented, no one has successfully developed and verified that such a prosthesis can improve amputee gait compared to a conventional passive-elastic prosthesis. One of the main hurdles that hinder such a development i...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although the potential benefits of a powered ankle-foot prosthesis have been well documented, no one has successfully developed and verified that such a prosthesis can improve amputee gait compared to a conventional passive-elastic prosthesis. One of the main hurdles that hinder such a development is the challenge of building an ankle-foot prosthesis that matches the size and weight of the intact ankle, but still provides a sufficiently large instantaneous power output and torque to propel an amputee. In this paper, we present a novel, powered ankle-foot prosthesis that overcomes these design challenges. The prosthesis comprises an unidirectional spring, configured in parallel with a force-controllable actuator with series elasticity. With this architecture, the ankle-foot prosthesis matches the size and weight of the human ankle, and is shown to be satisfying the restrictive design specifications dictated by normal human ankle walking biomechanics. |
---|---|
ISSN: | 1945-7898 1945-7901 |
DOI: | 10.1109/ICORR.2007.4428441 |