Benchmarking evolutionary algorithms on convenience kinetics models of the valine and leucine biosynthesis in C. glutamicum

An important problem in systems biology is parameter estimation for biochemical system models. Our work concentrates on the metabolic subnetwork of the valine and leucine biosynthesis in Corynebacterium glutamicum, an anaerobic actinobacterium of high biotechnological importance. Using data of an in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Drager, A., Kronfeld, M., Supper, J., Planatscher, H., Magnus, J.B., Oldiges, M., Zell, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An important problem in systems biology is parameter estimation for biochemical system models. Our work concentrates on the metabolic subnetwork of the valine and leucine biosynthesis in Corynebacterium glutamicum, an anaerobic actinobacterium of high biotechnological importance. Using data of an in vivo experiment measuring 13 metabolites during a glucose stimulus-response experiment we investigate the performance of various evolutionary algorithms on the parameter inference problem in biochemical modeling. Due to the inconclusive information on the reversibility of the reactions in the pathway, we develop both a reversible and an irreversible differential equation model based on the recent convenience kinetics approach. As the reversible model allows better approximation on the whole, we use it to analyze the impact of different settings on four especially promising EAs. We show that Particle Swarm Optimization as well as Differential Evolution are useful methods for parameter estimation on convenience kinetics models outperforming Genetic Algorithm and Evolution Strategy approaches and nearly reaching the quality of independent spline approximations on the raw data.
ISSN:1089-778X
1941-0026
DOI:10.1109/CEC.2007.4424565