Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3 V

This paper reports on low-power and high-speed resistive switching of a Ti-doped NiO memory, which is based on the switching mechanism of the redox reactions in a filamentary conductive path. A small reset current of less than 100 muA was achieved by controlling the gate voltage of a cell transistor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tsunoda, K., Kinoshita, K., Noshiro, H., Yamazaki, Y., Iizuka, T., Ito, Y., Takahashi, A., Okano, A., Sato, Y., Fukano, T., Aoki, M., Sugiyama, Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports on low-power and high-speed resistive switching of a Ti-doped NiO memory, which is based on the switching mechanism of the redox reactions in a filamentary conductive path. A small reset current of less than 100 muA was achieved by controlling the gate voltage of a cell transistor, which acts as an excellent current limiter in the set operation. A fast reset time of less than 5 ns was achieved by doping the Ti into the NiO film. Ti is thought to be effective to not only stabilize the reset process by forming an oxygen reservoir, but also to suppress the abnormal set phenomenon during the reset operation due to the formation of strong Ti-O bonds. Moreover, stable pulse switching with a large resistance change ratio has been successfully demonstrated using a unipolar voltage source of less than 3 V.
ISSN:0163-1918
2156-017X
DOI:10.1109/IEDM.2007.4419060