MINT Views: Materialized In-Network Top-k Views in Sensor Networks

In this paper we introduce MINT (materialized in-network top-k) Views, a novel framework for optimizing the execution of continuous monitoring queries in sensor networks. A typical materialized view V maintains the complete results of a query Q in order to minimize the cost of future query execution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zeinalipour-Yazti, D., Andreou, P., Chrysanthis, P.K., Samaras, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue
container_start_page 182
container_title
container_volume
creator Zeinalipour-Yazti, D.
Andreou, P.
Chrysanthis, P.K.
Samaras, G.
description In this paper we introduce MINT (materialized in-network top-k) Views, a novel framework for optimizing the execution of continuous monitoring queries in sensor networks. A typical materialized view V maintains the complete results of a query Q in order to minimize the cost of future query executions. In a sensor network context, maintaining consistency between V and the underlying and distributed base relation R is very expensive in terms of communication. Thus, our approach focuses on a subset V(sube. V) that unveils only the k highest-ranked answers at the sink for some user defined parameter k. We additionally provide an elaborate description of energy-conscious algorithms for constructing, pruning and maintaining such recursively- defined in-network views. Our trace-driven experimentation with real datasets show that MINT offers significant energy reductions compared to other predominant data acquisition models.
doi_str_mv 10.1109/MDM.2007.34
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4417141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4417141</ieee_id><sourcerecordid>4417141</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1274-e9b5bd151df9ff561d90cf4e88adc22c34ad082c7496f314972a826f8d948ebf3</originalsourceid><addsrcrecordid>eNotj71OwzAYRS1-JELpxMjiF3DwZ3-ObTYof5GaMhBYKye2JdOSVnGlCp4epHa6wzk60iXkGngJwO1t89iUgnNdSjwhhZBaMS4FnpKp1QZQIIJAsGekAKWAVQLVBbnM-YtzWRmuC_LQ1IuWfqawz3e0cbswJrdOv8HTemCLsNtvxhVtN1u2Okg0DfQ9DHkz0iPNV-Q8unUO0-NOyMfzUzt7ZfO3l3p2P2cJhEYWbKc6Dwp8tDGqCrzlfcRgjPO9EL1E57kRvUZbRQlotXBGVNF4iyZ0UU7IzaGbQgjL7Zi-3fiz_L-oAUH-AWQISc8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MINT Views: Materialized In-Network Top-k Views in Sensor Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zeinalipour-Yazti, D. ; Andreou, P. ; Chrysanthis, P.K. ; Samaras, G.</creator><creatorcontrib>Zeinalipour-Yazti, D. ; Andreou, P. ; Chrysanthis, P.K. ; Samaras, G.</creatorcontrib><description>In this paper we introduce MINT (materialized in-network top-k) Views, a novel framework for optimizing the execution of continuous monitoring queries in sensor networks. A typical materialized view V maintains the complete results of a query Q in order to minimize the cost of future query executions. In a sensor network context, maintaining consistency between V and the underlying and distributed base relation R is very expensive in terms of communication. Thus, our approach focuses on a subset V(sube. V) that unveils only the k highest-ranked answers at the sink for some user defined parameter k. We additionally provide an elaborate description of energy-conscious algorithms for constructing, pruning and maintaining such recursively- defined in-network views. Our trace-driven experimentation with real datasets show that MINT offers significant energy reductions compared to other predominant data acquisition models.</description><identifier>ISSN: 1551-6245</identifier><identifier>ISBN: 9781424412419</identifier><identifier>ISBN: 1424412412</identifier><identifier>EISSN: 2375-0324</identifier><identifier>DOI: 10.1109/MDM.2007.34</identifier><language>eng</language><publisher>Conference and Custom Publishing</publisher><subject>Availability ; Computer science ; Computerized monitoring ; Context ; Costs ; Data acquisition ; Hardware ; Power generation economics ; Query processing ; Sensor phenomena and characterization</subject><ispartof>2007 International Conference on Mobile Data Management, 2007, p.182-189</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4417141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4417141$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeinalipour-Yazti, D.</creatorcontrib><creatorcontrib>Andreou, P.</creatorcontrib><creatorcontrib>Chrysanthis, P.K.</creatorcontrib><creatorcontrib>Samaras, G.</creatorcontrib><title>MINT Views: Materialized In-Network Top-k Views in Sensor Networks</title><title>2007 International Conference on Mobile Data Management</title><addtitle>MDM</addtitle><description>In this paper we introduce MINT (materialized in-network top-k) Views, a novel framework for optimizing the execution of continuous monitoring queries in sensor networks. A typical materialized view V maintains the complete results of a query Q in order to minimize the cost of future query executions. In a sensor network context, maintaining consistency between V and the underlying and distributed base relation R is very expensive in terms of communication. Thus, our approach focuses on a subset V(sube. V) that unveils only the k highest-ranked answers at the sink for some user defined parameter k. We additionally provide an elaborate description of energy-conscious algorithms for constructing, pruning and maintaining such recursively- defined in-network views. Our trace-driven experimentation with real datasets show that MINT offers significant energy reductions compared to other predominant data acquisition models.</description><subject>Availability</subject><subject>Computer science</subject><subject>Computerized monitoring</subject><subject>Context</subject><subject>Costs</subject><subject>Data acquisition</subject><subject>Hardware</subject><subject>Power generation economics</subject><subject>Query processing</subject><subject>Sensor phenomena and characterization</subject><issn>1551-6245</issn><issn>2375-0324</issn><isbn>9781424412419</isbn><isbn>1424412412</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj71OwzAYRS1-JELpxMjiF3DwZ3-ObTYof5GaMhBYKye2JdOSVnGlCp4epHa6wzk60iXkGngJwO1t89iUgnNdSjwhhZBaMS4FnpKp1QZQIIJAsGekAKWAVQLVBbnM-YtzWRmuC_LQ1IuWfqawz3e0cbswJrdOv8HTemCLsNtvxhVtN1u2Okg0DfQ9DHkz0iPNV-Q8unUO0-NOyMfzUzt7ZfO3l3p2P2cJhEYWbKc6Dwp8tDGqCrzlfcRgjPO9EL1E57kRvUZbRQlotXBGVNF4iyZ0UU7IzaGbQgjL7Zi-3fiz_L-oAUH-AWQISc8</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Zeinalipour-Yazti, D.</creator><creator>Andreou, P.</creator><creator>Chrysanthis, P.K.</creator><creator>Samaras, G.</creator><general>Conference and Custom Publishing</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200705</creationdate><title>MINT Views: Materialized In-Network Top-k Views in Sensor Networks</title><author>Zeinalipour-Yazti, D. ; Andreou, P. ; Chrysanthis, P.K. ; Samaras, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1274-e9b5bd151df9ff561d90cf4e88adc22c34ad082c7496f314972a826f8d948ebf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Availability</topic><topic>Computer science</topic><topic>Computerized monitoring</topic><topic>Context</topic><topic>Costs</topic><topic>Data acquisition</topic><topic>Hardware</topic><topic>Power generation economics</topic><topic>Query processing</topic><topic>Sensor phenomena and characterization</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeinalipour-Yazti, D.</creatorcontrib><creatorcontrib>Andreou, P.</creatorcontrib><creatorcontrib>Chrysanthis, P.K.</creatorcontrib><creatorcontrib>Samaras, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeinalipour-Yazti, D.</au><au>Andreou, P.</au><au>Chrysanthis, P.K.</au><au>Samaras, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MINT Views: Materialized In-Network Top-k Views in Sensor Networks</atitle><btitle>2007 International Conference on Mobile Data Management</btitle><stitle>MDM</stitle><date>2007-05</date><risdate>2007</risdate><spage>182</spage><epage>189</epage><pages>182-189</pages><issn>1551-6245</issn><eissn>2375-0324</eissn><isbn>9781424412419</isbn><isbn>1424412412</isbn><abstract>In this paper we introduce MINT (materialized in-network top-k) Views, a novel framework for optimizing the execution of continuous monitoring queries in sensor networks. A typical materialized view V maintains the complete results of a query Q in order to minimize the cost of future query executions. In a sensor network context, maintaining consistency between V and the underlying and distributed base relation R is very expensive in terms of communication. Thus, our approach focuses on a subset V(sube. V) that unveils only the k highest-ranked answers at the sink for some user defined parameter k. We additionally provide an elaborate description of energy-conscious algorithms for constructing, pruning and maintaining such recursively- defined in-network views. Our trace-driven experimentation with real datasets show that MINT offers significant energy reductions compared to other predominant data acquisition models.</abstract><pub>Conference and Custom Publishing</pub><doi>10.1109/MDM.2007.34</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-6245
ispartof 2007 International Conference on Mobile Data Management, 2007, p.182-189
issn 1551-6245
2375-0324
language eng
recordid cdi_ieee_primary_4417141
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Availability
Computer science
Computerized monitoring
Context
Costs
Data acquisition
Hardware
Power generation economics
Query processing
Sensor phenomena and characterization
title MINT Views: Materialized In-Network Top-k Views in Sensor Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MINT%20Views:%20Materialized%20In-Network%20Top-k%20Views%20in%20Sensor%20Networks&rft.btitle=2007%20International%20Conference%20on%20Mobile%20Data%20Management&rft.au=Zeinalipour-Yazti,%20D.&rft.date=2007-05&rft.spage=182&rft.epage=189&rft.pages=182-189&rft.issn=1551-6245&rft.eissn=2375-0324&rft.isbn=9781424412419&rft.isbn_list=1424412412&rft_id=info:doi/10.1109/MDM.2007.34&rft_dat=%3Cieee_6IE%3E4417141%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4417141&rfr_iscdi=true