MINT Views: Materialized In-Network Top-k Views in Sensor Networks
In this paper we introduce MINT (materialized in-network top-k) Views, a novel framework for optimizing the execution of continuous monitoring queries in sensor networks. A typical materialized view V maintains the complete results of a query Q in order to minimize the cost of future query execution...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | |
container_start_page | 182 |
container_title | |
container_volume | |
creator | Zeinalipour-Yazti, D. Andreou, P. Chrysanthis, P.K. Samaras, G. |
description | In this paper we introduce MINT (materialized in-network top-k) Views, a novel framework for optimizing the execution of continuous monitoring queries in sensor networks. A typical materialized view V maintains the complete results of a query Q in order to minimize the cost of future query executions. In a sensor network context, maintaining consistency between V and the underlying and distributed base relation R is very expensive in terms of communication. Thus, our approach focuses on a subset V(sube. V) that unveils only the k highest-ranked answers at the sink for some user defined parameter k. We additionally provide an elaborate description of energy-conscious algorithms for constructing, pruning and maintaining such recursively- defined in-network views. Our trace-driven experimentation with real datasets show that MINT offers significant energy reductions compared to other predominant data acquisition models. |
doi_str_mv | 10.1109/MDM.2007.34 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4417141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4417141</ieee_id><sourcerecordid>4417141</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1274-e9b5bd151df9ff561d90cf4e88adc22c34ad082c7496f314972a826f8d948ebf3</originalsourceid><addsrcrecordid>eNotj71OwzAYRS1-JELpxMjiF3DwZ3-ObTYof5GaMhBYKye2JdOSVnGlCp4epHa6wzk60iXkGngJwO1t89iUgnNdSjwhhZBaMS4FnpKp1QZQIIJAsGekAKWAVQLVBbnM-YtzWRmuC_LQ1IuWfqawz3e0cbswJrdOv8HTemCLsNtvxhVtN1u2Okg0DfQ9DHkz0iPNV-Q8unUO0-NOyMfzUzt7ZfO3l3p2P2cJhEYWbKc6Dwp8tDGqCrzlfcRgjPO9EL1E57kRvUZbRQlotXBGVNF4iyZ0UU7IzaGbQgjL7Zi-3fiz_L-oAUH-AWQISc8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MINT Views: Materialized In-Network Top-k Views in Sensor Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zeinalipour-Yazti, D. ; Andreou, P. ; Chrysanthis, P.K. ; Samaras, G.</creator><creatorcontrib>Zeinalipour-Yazti, D. ; Andreou, P. ; Chrysanthis, P.K. ; Samaras, G.</creatorcontrib><description>In this paper we introduce MINT (materialized in-network top-k) Views, a novel framework for optimizing the execution of continuous monitoring queries in sensor networks. A typical materialized view V maintains the complete results of a query Q in order to minimize the cost of future query executions. In a sensor network context, maintaining consistency between V and the underlying and distributed base relation R is very expensive in terms of communication. Thus, our approach focuses on a subset V(sube. V) that unveils only the k highest-ranked answers at the sink for some user defined parameter k. We additionally provide an elaborate description of energy-conscious algorithms for constructing, pruning and maintaining such recursively- defined in-network views. Our trace-driven experimentation with real datasets show that MINT offers significant energy reductions compared to other predominant data acquisition models.</description><identifier>ISSN: 1551-6245</identifier><identifier>ISBN: 9781424412419</identifier><identifier>ISBN: 1424412412</identifier><identifier>EISSN: 2375-0324</identifier><identifier>DOI: 10.1109/MDM.2007.34</identifier><language>eng</language><publisher>Conference and Custom Publishing</publisher><subject>Availability ; Computer science ; Computerized monitoring ; Context ; Costs ; Data acquisition ; Hardware ; Power generation economics ; Query processing ; Sensor phenomena and characterization</subject><ispartof>2007 International Conference on Mobile Data Management, 2007, p.182-189</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4417141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4417141$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeinalipour-Yazti, D.</creatorcontrib><creatorcontrib>Andreou, P.</creatorcontrib><creatorcontrib>Chrysanthis, P.K.</creatorcontrib><creatorcontrib>Samaras, G.</creatorcontrib><title>MINT Views: Materialized In-Network Top-k Views in Sensor Networks</title><title>2007 International Conference on Mobile Data Management</title><addtitle>MDM</addtitle><description>In this paper we introduce MINT (materialized in-network top-k) Views, a novel framework for optimizing the execution of continuous monitoring queries in sensor networks. A typical materialized view V maintains the complete results of a query Q in order to minimize the cost of future query executions. In a sensor network context, maintaining consistency between V and the underlying and distributed base relation R is very expensive in terms of communication. Thus, our approach focuses on a subset V(sube. V) that unveils only the k highest-ranked answers at the sink for some user defined parameter k. We additionally provide an elaborate description of energy-conscious algorithms for constructing, pruning and maintaining such recursively- defined in-network views. Our trace-driven experimentation with real datasets show that MINT offers significant energy reductions compared to other predominant data acquisition models.</description><subject>Availability</subject><subject>Computer science</subject><subject>Computerized monitoring</subject><subject>Context</subject><subject>Costs</subject><subject>Data acquisition</subject><subject>Hardware</subject><subject>Power generation economics</subject><subject>Query processing</subject><subject>Sensor phenomena and characterization</subject><issn>1551-6245</issn><issn>2375-0324</issn><isbn>9781424412419</isbn><isbn>1424412412</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj71OwzAYRS1-JELpxMjiF3DwZ3-ObTYof5GaMhBYKye2JdOSVnGlCp4epHa6wzk60iXkGngJwO1t89iUgnNdSjwhhZBaMS4FnpKp1QZQIIJAsGekAKWAVQLVBbnM-YtzWRmuC_LQ1IuWfqawz3e0cbswJrdOv8HTemCLsNtvxhVtN1u2Okg0DfQ9DHkz0iPNV-Q8unUO0-NOyMfzUzt7ZfO3l3p2P2cJhEYWbKc6Dwp8tDGqCrzlfcRgjPO9EL1E57kRvUZbRQlotXBGVNF4iyZ0UU7IzaGbQgjL7Zi-3fiz_L-oAUH-AWQISc8</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Zeinalipour-Yazti, D.</creator><creator>Andreou, P.</creator><creator>Chrysanthis, P.K.</creator><creator>Samaras, G.</creator><general>Conference and Custom Publishing</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200705</creationdate><title>MINT Views: Materialized In-Network Top-k Views in Sensor Networks</title><author>Zeinalipour-Yazti, D. ; Andreou, P. ; Chrysanthis, P.K. ; Samaras, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1274-e9b5bd151df9ff561d90cf4e88adc22c34ad082c7496f314972a826f8d948ebf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Availability</topic><topic>Computer science</topic><topic>Computerized monitoring</topic><topic>Context</topic><topic>Costs</topic><topic>Data acquisition</topic><topic>Hardware</topic><topic>Power generation economics</topic><topic>Query processing</topic><topic>Sensor phenomena and characterization</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeinalipour-Yazti, D.</creatorcontrib><creatorcontrib>Andreou, P.</creatorcontrib><creatorcontrib>Chrysanthis, P.K.</creatorcontrib><creatorcontrib>Samaras, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeinalipour-Yazti, D.</au><au>Andreou, P.</au><au>Chrysanthis, P.K.</au><au>Samaras, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MINT Views: Materialized In-Network Top-k Views in Sensor Networks</atitle><btitle>2007 International Conference on Mobile Data Management</btitle><stitle>MDM</stitle><date>2007-05</date><risdate>2007</risdate><spage>182</spage><epage>189</epage><pages>182-189</pages><issn>1551-6245</issn><eissn>2375-0324</eissn><isbn>9781424412419</isbn><isbn>1424412412</isbn><abstract>In this paper we introduce MINT (materialized in-network top-k) Views, a novel framework for optimizing the execution of continuous monitoring queries in sensor networks. A typical materialized view V maintains the complete results of a query Q in order to minimize the cost of future query executions. In a sensor network context, maintaining consistency between V and the underlying and distributed base relation R is very expensive in terms of communication. Thus, our approach focuses on a subset V(sube. V) that unveils only the k highest-ranked answers at the sink for some user defined parameter k. We additionally provide an elaborate description of energy-conscious algorithms for constructing, pruning and maintaining such recursively- defined in-network views. Our trace-driven experimentation with real datasets show that MINT offers significant energy reductions compared to other predominant data acquisition models.</abstract><pub>Conference and Custom Publishing</pub><doi>10.1109/MDM.2007.34</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-6245 |
ispartof | 2007 International Conference on Mobile Data Management, 2007, p.182-189 |
issn | 1551-6245 2375-0324 |
language | eng |
recordid | cdi_ieee_primary_4417141 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Availability Computer science Computerized monitoring Context Costs Data acquisition Hardware Power generation economics Query processing Sensor phenomena and characterization |
title | MINT Views: Materialized In-Network Top-k Views in Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MINT%20Views:%20Materialized%20In-Network%20Top-k%20Views%20in%20Sensor%20Networks&rft.btitle=2007%20International%20Conference%20on%20Mobile%20Data%20Management&rft.au=Zeinalipour-Yazti,%20D.&rft.date=2007-05&rft.spage=182&rft.epage=189&rft.pages=182-189&rft.issn=1551-6245&rft.eissn=2375-0324&rft.isbn=9781424412419&rft.isbn_list=1424412412&rft_id=info:doi/10.1109/MDM.2007.34&rft_dat=%3Cieee_6IE%3E4417141%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4417141&rfr_iscdi=true |