MINT Views: Materialized In-Network Top-k Views in Sensor Networks
In this paper we introduce MINT (materialized in-network top-k) Views, a novel framework for optimizing the execution of continuous monitoring queries in sensor networks. A typical materialized view V maintains the complete results of a query Q in order to minimize the cost of future query execution...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce MINT (materialized in-network top-k) Views, a novel framework for optimizing the execution of continuous monitoring queries in sensor networks. A typical materialized view V maintains the complete results of a query Q in order to minimize the cost of future query executions. In a sensor network context, maintaining consistency between V and the underlying and distributed base relation R is very expensive in terms of communication. Thus, our approach focuses on a subset V(sube. V) that unveils only the k highest-ranked answers at the sink for some user defined parameter k. We additionally provide an elaborate description of energy-conscious algorithms for constructing, pruning and maintaining such recursively- defined in-network views. Our trace-driven experimentation with real datasets show that MINT offers significant energy reductions compared to other predominant data acquisition models. |
---|---|
ISSN: | 1551-6245 2375-0324 |
DOI: | 10.1109/MDM.2007.34 |