T-S fuzzy model identification and the fuzzy model based controller design
This paper presents an algorithm to identify T-S fuzzy models and design fuzzy model based controllers (FMBC) for a class of nonlinear plant. First, the algorithm using fuzzy c-regression models (FCRM) clustering to find the functional relationships in the product space of the input-output data. A n...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an algorithm to identify T-S fuzzy models and design fuzzy model based controllers (FMBC) for a class of nonlinear plant. First, the algorithm using fuzzy c-regression models (FCRM) clustering to find the functional relationships in the product space of the input-output data. A new cluster validity criterion is proposed to calculate overall compactness and separateness of the FCRM partition and then determine the appropriate number of regression models. Besides, the fine-tuning of the antecedent fuzzy set and the consequent parameters are considered. Thus, an efficient T-S fuzzy model with compact if-then rules can be generated systematically. Finally, an FMBC is proposed to make the nonlinear plant track the reference trajectory signal. A simulation example is provided to demonstrate the accuracy and effectiveness of the proposed algorithm. |
---|---|
ISSN: | 1062-922X 2577-1655 |
DOI: | 10.1109/ICSMC.2007.4413895 |