An Interactive Approach to Pose-Assisted and Appearance-based Segmentation of Humans
An interactive human segmentation approach is described. Given regions of interest provided by users, the approach iteratively estimates segmentation via a generalized EM algorithm. Specifically, it encodes both spatial and color information in a nonparametric kernel density estimator, and incorpora...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An interactive human segmentation approach is described. Given regions of interest provided by users, the approach iteratively estimates segmentation via a generalized EM algorithm. Specifically, it encodes both spatial and color information in a nonparametric kernel density estimator, and incorporates local MRF constraints and global pose inferences to propagate beliefs over image space iteratively to determine a coherent segmentation. This ensures the segmented humans resemble the shapes of human poses. Additionally, a layered occlusion model and a probabilistic occlusion reasoning method are proposed to handle segmentation of multiple humans in occlusion. The approach is tested on a wide variety of images containing single or multiple occluded humans, and the segmentation performance is evaluated quantitatively. |
---|---|
ISSN: | 1550-5499 2380-7504 |
DOI: | 10.1109/ICCV.2007.4409123 |