An Interactive Approach to Pose-Assisted and Appearance-based Segmentation of Humans

An interactive human segmentation approach is described. Given regions of interest provided by users, the approach iteratively estimates segmentation via a generalized EM algorithm. Specifically, it encodes both spatial and color information in a nonparametric kernel density estimator, and incorpora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhe Lin, Davis, L.S., Doermann, D., DeMenthon, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An interactive human segmentation approach is described. Given regions of interest provided by users, the approach iteratively estimates segmentation via a generalized EM algorithm. Specifically, it encodes both spatial and color information in a nonparametric kernel density estimator, and incorporates local MRF constraints and global pose inferences to propagate beliefs over image space iteratively to determine a coherent segmentation. This ensures the segmented humans resemble the shapes of human poses. Additionally, a layered occlusion model and a probabilistic occlusion reasoning method are proposed to handle segmentation of multiple humans in occlusion. The approach is tested on a wide variety of images containing single or multiple occluded humans, and the segmentation performance is evaluated quantitatively.
ISSN:1550-5499
2380-7504
DOI:10.1109/ICCV.2007.4409123